
Robinet à soupape d'arrêt à passage droit avec brides

DN 15 - 250

ARI-STEVI® 405 / 460 Servomoteur ARI-PREMIO

- Indice de protection IP 65
- 2 limiteurs de couple
- · Commande manuelle
- Accessoires supplémentaires livrables (par exemple: potentiomètre)

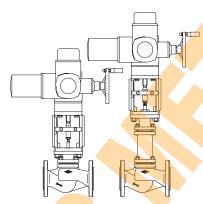

Page 2

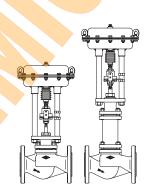
Fig. 405

ARI-STEVI® 405 / 460

Servomoteur AUMA SA

- Servomoteur à couple de manoeuvre élevé
- Indice de protection IP 67
- 2 limiteurs de couple
- 2 contacts de fin de course
- · Commande manuelle
- Protection thermique du moteur de série
- Accessoires supplémentaires livrables (par exemple: potentiomètre)
- · Version antidéflagrante possible

Page 10


ne 10

ARI-STEVI® 405 / 460

Actionneur pneumatique ARI-DP

- · Actionneur réversible
- Actionneur à membrane déroulante
- Pression de commande maximale 6 bar
- Tige protégée par soufflet
- Joint torique d'étanchéité sans entretien avec guidage flexible
- Montage d'accessoires selon DIN IEC 60534-6

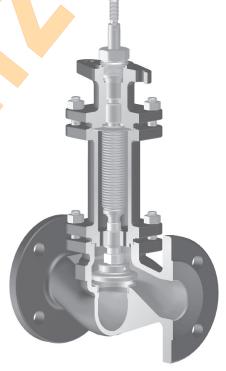


Fig. 460

Caractéristiques:

- · Conception compacte
- Guidage précis de la tige
- · Tige poli
- Garniture d'étanchéité à chevrons en PTFE comprimée par ressort
- · Soufflet à double paroi
- Indicateur mécanique de position

FIMIC SAS 4, rue des Nonnetiers 57070 METZ Tél : 03.87.76.32.32 Fax : 03.87.76.99.76 Internet : www.fimic.com E-mail : fimic@fimic.com

Robinet à soupape d'arrêt à passage droit avec actionneur électrique ARI-PREMIO (DN 15-150)

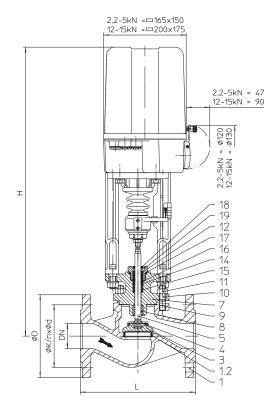


Fig. 405

Pression nominale	Matériau	Diamètre nominal
PN16	EN-JL1040	DN15-150
PN16	EN-JS1049	DN15-150
PN25	EN-JS1049	DN15-150
PN25	1.0619+N	DN15-150
PN40	1.0619+N	DN15-150
PN40	1.4408	DN15-150
	PN16 PN16 PN25 PN25 PN40	PN16 EN-JL1040 PN16 EN-JS1049 PN25 EN-JS1049 PN25 1.0619+N PN40 1.0619+N

Autres matériaux et exécutions sur demande

Etanchéité de la tige

Fig. 405: • Chevrons d' étanchéité en PTFE-10°C à +220°C

• Presse-étoupe en PTFE -10°C à +250°C

• Presse-étoupe en graphite pur -10°C à +450°C

Fig. 460: • Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C

Modèle de clapet

standard: • Clapet d'arrêt

option: • Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

- métal / métal classe de fuite 1 selon DIN 3230 T3 / B0
- métal / PTFE classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 4.

Caractéristiques techniques de l'actionneur: consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles

Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur d'eau, gaz, etc.

Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

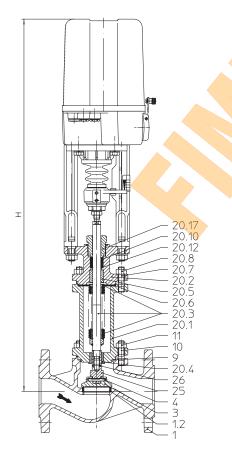


Fig. 460

FIMIC SAS 4, rue des Nonnetiers 57070 METZ Tél: 03.87.76.32.32 Fax: 03.87.76.99.76 Internet: www.fimic.com E-mail: fimic@fimic.com

ON		15	20	25	25 32	40	50	65	80	100	125	150		
L (mm)					150	160	180	200	230	290	310	350	400	480
Fig. 405	H (mm)			556	556	564	565	571	577	590	606	625	685	
•		PN16	(kg)	9	9,7	10,6	12,2	14,1	17	22,1				
	ARI-PREMIO 2,2 kN	PN25/40	(kg)	9,8	10,6	11,9	13,7	16,2	18,9	26,1				
	ARI-PREMIO 5 kN	PN16	(kg)	10,1	10,8	11,7	13,3	15,2	18,1	23,2	28,9	39	62	
		PN25/40	(kg)	10,9	11,7	13	14,8	17,3	20	27,2	33,4	46	74	
	Н	H (mm						721	727	740	756	775	833	893
	ARI-PREMIO 12 kN	PN16	(kg)					19,2	22,1	27,2	32,9	43	66	87
	ARI-PREMIO 15 kN	PN25/40	(kg)					21,3	24	31,2	37,4	50	78	109
ig. 460	Н		(mm)	741	741	749	749	740	742	826	838	854	913	
	ADI DDEMIO A A I-N	PN16	(kg)	13,4	13,4	14,4	16,9	19,4	21,9	24,9				
	ARI-PREMIO 2,2 kN	PN25/40	(kg)	15,4	16,9	19,4	22,4	28,4	30,9	37,9				
	ADI DDEMIO E IAN	PN16	(kg)	14,5	14,5	15,5	18	20,5	23	26	37	53	69	
	ARI-PREMIO 5 kN	PN25/40	(kg)	16,5	18	20,5	23,5	29,5	32	39	49	66	81	
	Н	H (mi						890	892	976	988	1004	1061	1219
	ARI-PREMIO 12 kN	PN16	(kg)					24,5	27	30	41	57	73	104
	ARI-PREMIO 15 kN	ARI-PREMIO 15 kN PN25/40						33,5	36	43	53	70	85	129

Longueur face à face FTF série 1 selon DIN EN 558

Pos.	Désignation	Fig. 12.405	Fig. 22.405 / Fig. 23.405	Fig. 34.405 / Fig. 35.405	Fig. 55.405
1	Corps	Fig. 12.460 EN-GJL-250 , EN-JL1040	Fig. 22.460 / Fig. 23.460 EN-GJS-400-18U-LT, EN-JS1049	Fig. 34.460 / Fig. 35.460 GP240GH+N, 1.0619+N	Fig. 55.460 GX5CrNiMo19-11-2, 1.4408
1.2	Bague de siège	X20Cr13+QT, 1.4021+QT	EN-333-400-100-L1, EN-331043	X20Cr13+QT, 1.4021+QT >DN50: G19 9 Nb Si, 1.4551	GASCHNINIO19-11-2, 1.4400
3	Clapet *	X20Cr13+QT, 1.4021+QT			X6CrNiMoTi17-12-2, 1.4571
4	Manchon de serrage *	46S20+C, 1.0727+C			
5	Tige *	X20Cr13+QT, 1.4021+QT			X6CrNiMoTi17-12-2, 1.4571
7	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS10	049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408
8	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre	mpé)		X6CrNiMoTi17-12-2, 1.4571
9	Joint plat *	Graphite pur (avec âme en aci	er inoxydable, CrNi)		
10	Goujons filetés	25CrMo4, 1.7218			A4 - 70
11	Ecrous hexagonaux	C35E, 1.1181			A4
12	Manchettes *	PTFE			
14	Rondelle *	X5CrNi18-10, 1.4301			
15	Ressort de pression *	X12CrNi17-7, 1.4310			
16	Douille *	PTFE (renforcé)			
17	Bague d'étanchéité *	Cu / Acier doux			X6CrNiMoTi17-12-2, 1.4571
18	Racleur *	PTFE (renforcé)			
19	Boulonnage *	X8CrNiS18-9, 1.4305			
20.1	Entretoise de soufflet	EN-GJS-400-18U-LT, EN-JS10	049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408
20.2	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS10	049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6	CrNiTi18-10, 1.4541		X6CrNiMoTi17-12-2, 1.4571
20.4	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre	mpé)		X6CrNiMoTi17-12-2, 1.4571
20.5	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre			X6CrNiMoTi17-12-2, 1.4571
20.6	Joint plat *	Graphite pur (avec âme en ac	er inoxydable, CrNi)		
20.7	Goujons filetés	25CrMo4, 1.7218			A4 - 70
20.8	Ecrous hexagonaux	C35E, 1.1181			A4
20.9	Goupille cannelée d'ajustage (DN125-150)	St			
20.10	Anneau de garniture *	Graphite pur			
20.12	Rondelle *	X5CrNi18-10, 1.4301			
20.17	Boulonnage *	X8CrNiS18-9, 1.4305			
25	Rallonge de tige *	X20Cr13+QT, 1.4021+QT			X6CrNiMoTi17-12-2, 1.4571
26	Manchon de serrage *	X12CrNi17-7, 1.4310			
* Pièces de re	echange	<u> </u>	<u> </u>		

Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0 Respecter les limites dictées par le Tableau: pressions/températures, cf. page 27.

DN			15	20	25	32	40	50	65	80	100	125	150
Valeur Kvs	Valeur Kvs		4,2	7,4	12	19	31	47	77	120	188	288	410
Course (mm)			4	5	7	8	10	13	17	20	25	32	38
Pression diff. max	. admissible (bar)		2	2	2	2	2	2	2	2	1,5	1,5	1
	Pression de	l.	36,2	36,2	21,6	14,8	7,1	3,5	1,1				
Servomoteur 1)	fermeture	II.	33,3	33,3	19,7	13,4	6,2	3					
ARI-PREMIO	(bar)	III.	23,6	23,6	18,1	12,2	5	2,2					
2,2 kN	Temps de manoeuv (vit. de réglage 0,38		11	13	18	21	26	34	45				
	Pression de	l.	40	40	40	40	26,2	15,9	8,6	5,1	2,8	1,3	
	fermeture (bar)	II.	40	40	40	40	25,4	15,4	8,2	4,8	2,6	1,2	
Servomoteur 1)		III.	40	40	40	40	24,2	14,6	7,9	4,6	2,5	1,1	
ARI-PREMIO 5 kN	Temps de manoeuvre ²⁾ (s) (vit. de réglage 0,38 mm/s)		11	13	18	21	26	34	45	53	66	84	
	Temps de manoeuvre ²⁾ (s) (vit. de réglage 1 mm/s)		4	5	7	8	10	13	17	20	25	32	
	Pression de	l.					40	40	27,5	17,7	11	6,6	4,3
Servomoteur 1)	fermeture	II.					40	40	27,1	17,4	10,8	6,5	4,2
ARI-PREMIO	(bar)	III.					40	40	26,8	17,2	10,7	6,4	4,1
12 kN	Temps de manoeuv (vit. de réglage 0,38						26	34	45	53	66	84	100
	Pression de	l.							35,6	23,1	14,5	8,9	5,9
Servomoteur 1)	fermeture	II.							35,2	22,8	14,3	8,7	5,8
ARI-PREMIO	(bar)	III.							34,9	22,6	14,2	8,7	5,7
15 kN	Temps de manoeuv (vit. de réglage 0,38								45	53	66	84	100

II. Fig. 405: Presse-étoupe en PTFE / graphite pur;

4

III. Fig. 460: Soufflet métallique d'étanchéité

¹⁾ Tension moteur: 230V 50Hz

Autres tensions: 24V 50/60Hz; 115V 50/60Hz; 230V 60Hz

Autres caractéristiques techniques du servomoteur: cf. fiche technique ARI-PREMIO.

²⁾ Les temps de manoeuvre indiqués concernent la fréquence 50Hz.

Robinet à soupape d'arrêt à passage droit avec actionneur électrique ARI-PREMIO (DN 200-250)

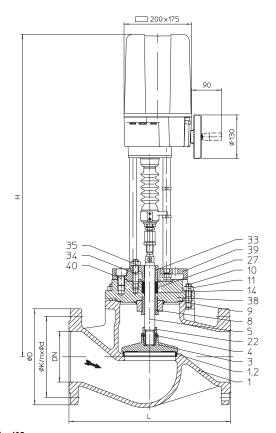


Fig. 405

Figure	Pression nominale	Matériau	Diamètre nominal
12.405 / 12.460	PN16	EN-JL1040	DN200-250
22.405 / 22.460	PN16	EN-JS1049	DN200-250
34.405 / 34.460	PN25	1.0619+N	DN200-250
35.405 / 35.460	DN200-250		
Autres matériaux et exéc	utions sur demande.		

Etanchéité de la tige

Fig. 405: • Presse-étoupe en PTFE -10°C à +250°C

• Presse-étoupe en graphite pur -10°C à +450°C

Fig. 460: • Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C

Modèle de clapet

standard: Clapet d'arrêt

• Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C) option:

Etanchéité (classe de fuite siège / clapet)

- métal / métal classe de fuite 1 selon DIN 3230 T3 / B0
- métal / PTFE classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 8.

Caractéristiques techniques de l'actionneur consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles

Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur

Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

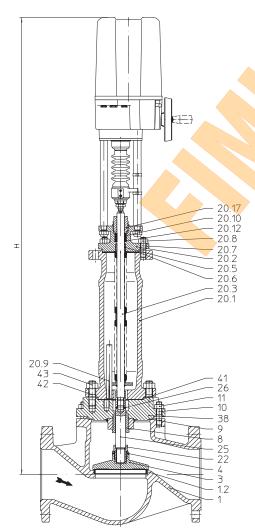


Fig. 460

Dimensions et poids

DN				200	250	
L	L (mm)		(mm)	600	730	
Fig. 405	g. 405 H (m		(mm)	982	1072	
	ARI-PREMIO 12 kN			PN16 (kg) 1	142 2	214
	ARI-PREMIO 15 kN			173	250	
Fig. 460	Н		(mm)	1418	1494	
	ARI-PREMIO 12 kN PN16		(kg)	150	230	
	ARI-PREMIO 15 kN	PN25/40	(kg)	180	265	
Dimensions	s standard des brides voir p	page 27.				

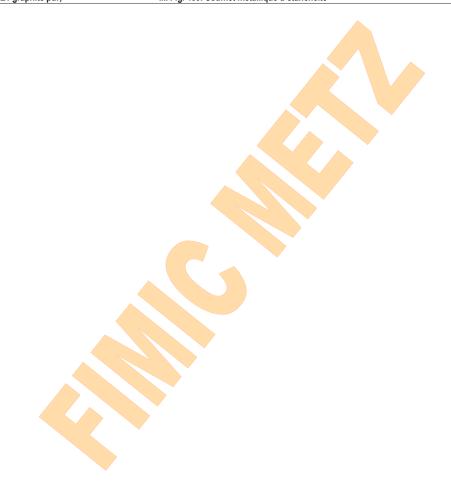
Longueur face à face FTF série 1 selon DIN EN 558

Nomenclature

Pos.	Désignation	Fig. 12.405 Fig. 12.460	Fig. 22.405 Fig. 22.460	Fig. 34.405 / Fig. 35.405 Fig. 34.460 / Fig. 35.460							
1	Corps	EN-GJL-250, EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N							
1.2	Bague de siège	X20Cr13+QT, 1.4021+QT		X20Cr13+QT, 1.4021+QT >DN50: G19 9 Nb Si, 1.4551							
3	Clapet *	X20Cr13+QT, 1.4021+QT									
4	Manchon de serrage *	46S20+C, 1.0727+C									
5	Tige *	X20Cr13+QT, 1.4021+QT									
8	Douille de guidage	X20Cr13+QT, 1.4021+QT (trempé)	JCr13+QT, 1.4021+QT (trempé)								
9	Joint plat *	Graphite pur (avec âme en acier inoxyda	ble, CrNi)								
10	Goujons filetés	25CrMo4, 1.7218									
11	Ecrous hexagonaux	C35E, 1.1181									
14	Rondelle *	X5CrNi18-10, 1.4301									
20.1	Entretoise de soufflet	EN-GJS-400-18U-LT, EN-JS1049		GP240GH+N, 1.0619+N							
20.2	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS1049		GP240GH+N, 1.0619+N							
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6CrNiTi18-1	0, 1.4541								
20.5	Douille de guidage	X20Cr13+QT, 1.4021+QT (trempé)									
20.6	Joint plat *	Graphite pur (avec âme en acier inoxyda	ble, CrNi)								
20.7	Goujons filetés	25CrMo4, 1.7218									
20.8	Ecrous hexagonaux	C35E, 1.1181									
20.9	Goupille cannelée d'ajustage	St									
20.10	Anneau de garniture *	Graphite pur									
20.12	Rondelle *	X5CrNi18-10, 1.4301									
20.17	Boulonnage *	X8CrNiS18-9, 1.4305									
22	Boulonnage *	X14CrMoS17+QT, 1.4104+QT									
25	Rallonge de tige *	X20Cr13+QT, 1.4021+QT									
26	Manchon de serrage *	X12CrNi17-7, 1.4310									
27	Anneau de garniture *	PTFE ou Graphite pur									
33	Bride de presse-étoupe	EN-GJS-400-15, EN-JS1030									
34	Goujons filetés	25CrMo4, 1.7218									
35	Ecrous hexagonaux	C35E, 1.1181									
38	Corps de presse-étoupe	EN-GJS-400-18U-LT, EN-JS1049		GP240GH+N, 1.0619+N							
39	Raccord de bride	EN-GJS-400-18U-LT, EN-JS1049									
40	Vis à tête cylindrique	8.8 - A2B									
41	Joint plat *	Graphite pur									
42	Goujons filetés	25CrMo4, 1.7218									
43	Ecrous hexagonaux	C35E, 1.1181									
* Pièces de re											

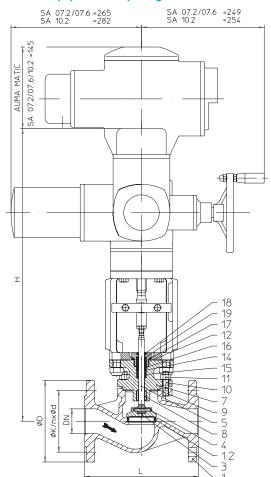
Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.


Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0 Respecter les limites dictées par le Tableau: pressions/températures, cf. page 27.


DN			200	250			
Valeur Kvs			725	1145			
Course (mm)	Course (mm)		50	65			
Pression diff. max	admissible (bar)		0,8	0,8			
	Pression de	II.	2	1,1			
Servomoteur 1)	fermeture (bar)	III.	2	1,1			
ARI-PREMIO 12 kN	Temps de manoeuvre (vit. de réglage 0,79		132	171			
	Temps de manoeuvre (vit. de réglage 0,79		63	82			
0 (1)	Pression de	II.	2,9	1,7			
Servomoteur 1) ARI-PREMIO			2,9	1,7			
Temps de manoeuvre ²⁾ (s) (vit. de réglage 0,38 mm/s)			132	171			
II. Fig. 405: Presso	e-étoupe en PTFE / gr	aphite	pur; III. Fig. 460: Soufflet métallique d'éta	anchéité			

¹⁾ Tension moteur: 230V 50Hz Autres tensions: 24V 50/60Hz; 115V 50/60Hz; 230V 60Hz Autres caractéristiques techniques du servomoteur: cf. fiche technique ARI-PREMIO.

²⁾ Les temps de manoeuvre indiqués concernent la fréquence 50Hz.

Robinet à soupape d'arrêt à passage droit avec actionneur électrique AUMA SA (DN 15-150)

Figure	Pression nominale	Matériau	Diamètre nominal
12.405 / 12.460	PN16	EN-JL1040	DN15-150
22.405 / 22.460	PN16	EN-JS1049	DN15-150
23.405 / 23.460	PN25	EN-JS1049	DN15-150
34.405 / 34.460	PN25	1.0619+N	DN15-150
35.405 / 35.460	PN40	1.0619+N	DN15-150
55.405 / 55.460	PN40	1.4408	DN15-150

Autres matériaux et exécutions sur demande.

Etanchéité de la tige

Fig. 405: • Chevrons d' étanchéité en PTFE-10°C à +220°C

• Presse-étoupe en PTFE -10°C à +250°C

• Presse-étoupe en graphite pur -10°C à +450°C

Fig. 460: • Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C

Modèle de clapet

standard: • Clapet d'arrêt

option: • Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

• métal / métal - classe de fuite 1 selon DIN 3230 T3 / B0

• métal / PTFE - classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 12.

Caractéristiques techniques de l'actionneur: consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles

Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur d'eau, gaz, etc.

Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

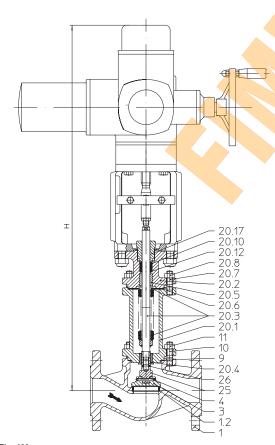


Fig. 460

ь.			
I)ım	ensior	19 PI	2hinn

DN				15	20	25	32	40	50	65	80	100	125	150
L	L (mm)				150	160	180	200	230	290	310	350	400	480
Fig. 405	Н		(mm)	596	596	604	605	611	617	630	646	665	703	763
	AUMA SA 07.2	PN16	(kg)	29,9	30,6	31,5	33,1	35	37,9	44,5	50,2	60	83	104
	AUMA SA 07.6	PN25/40	(kg)	30,7	31,5	32,8	34,6	37,1	39,8	48,5	54,7	68	95	126
	Н		(mm)							-	658	677	715	775
	AUMA SA 10.2	PN16	(kg)								54,7	65	87	108
		PN25/40	(kg)								59,2	72	99	130
Fig. 460	Н	H (r		781	781	789	789	780	782	866	878	894	931	1089
	AUMA SA 07.2	PN16	(kg)	34,3	34,3	35,3	37,8	40,3	42,8	47,3	58,3	74	90	121
	AUMA SA 07.6	PN25/40	(kg)	36,3	37,8	40,3	43,3	39,3	51,8	60,3	70,3	87	102	146
	Н		(mm)											1101
	ALIMA CA 40.2	PN16	(kg)											125
	AUMA SA 10.2	PN25/40	(kg)											150
Dimension	s standard des brides vo	oir page 27.					(Po	our l'exécu	tion avec I	AUMA SA	Ex, encom	brements	en hauteu	r différents.

Longueur face à face FTF série 1 selon DIN EN 558

Nomenclature

Pos.	Désignation	Fig. 12.405 Fig. 12.460	Fig. 22.405 / Fig. 23.405 Fig. 22.460 / Fig. 23.460	Fig. 34.405 / Fig. 35.405 Fig. 34.460 / Fig. 35.460	Fig. 55.405 Fig. 55.460					
1	Corps	EN-GJL-250 , EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408					
1.2	Bague de siège	X20Cr13+QT, 1.4021+QT		X20Cr13+QT, 1.4021+QT >DN50: G19 9 Nb Si, 1.4551						
3	Clapet *	X20Cr13+QT, 1.4021+QT			X6CrNiMoTi17-12-2, 1.4571					
4	Manchon de serrage *	46S20+C, 1.0727+C								
5	Tige *	X20Cr13+QT, 1.4021+QT	X6CrNiMoTi17-12-2, 1.4571							
7	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS	GX5CrNiMo19-11-2, 1.4408							
8	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre	X6CrNiMoTi17-12-2, 1.4571							
9	Joint plat *	Graphite pur (avec âme en aci	ier inoxydable, CrNi)							
10	Goujons filetés	25CrMo4, 1.7218								
11	Ecrous hexagonaux	C35E, 1.1181			A4					
12	Manchettes *	PTFE								
14	Rondelle *	X5CrNi18-10, 1.4301	CrNi18-10, 1.4301							
15	Ressort de pression *	X12CrNi17-7, 1.4310	12CrNi17-7, 1.4310							
16	Douille *	PTFE (renforcé)								
17	Bague d'étanchéité *	Cu / Acier doux			X6CrNiMoTi17-12-2, 1.4571					
18	Racleur *	PTFE (renforcé)								
19	Boulonnage *	X8CrNiS18-9, 1.4305								
20.1	Entretoise de soufflet	EN-GJS-400-18U-LT, EN-JS10	049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408					
20.2	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS10	049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408					
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6	CrNiTi18-10, 1.4541		X6CrNiMoTi17-12-2, 1.4571					
20.4	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre			X6CrNiMoTi17-12-2, 1.4571					
20.5	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre			X6CrNiMoTi17-12-2, 1.4571					
20.6	Joint plat *	Graphite pur (avec âme en ac	ier inoxydable, CrNi)							
20.7	Goujons filetés	25CrMo4, 1.7218			A4 - 70					
20.8	Ecrous hexagonaux	C35E, 1.1181			A4					
20.9	Goupille cannelée d'ajustage (DN125-150)	St								
20.10	Anneau de garniture *	Graphite pur								
20.12	Rondelle *	X5CrNi18-10, 1.4301								
20.17	Boulonnage *	X8CrNiS18-9, 1.4305								
25	Rallonge de tige *	X20Cr13+QT, 1.4021+QT			X6CrNiMoTi17-12-2, 1.4571					
26	Manchon de serrage *	X12CrNi17-7, 1.4310								
* Pièces de re	echange									

Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0 Respecter les limites dictées par le Tableau: pressions/températures, cf. page 27.

Trespecter les ill'ille	s dictees par le Tableau	. press	sions/temper	atures, cr. pa	iye 21.								
Fig. 405													
DN			15	20	25	32	40	50	65	80	100	125	150
Valeur Kvs			4,2	7,4	12	19	31	47	77	120	188	288	410
Course (mm)			4	5	7	8	10	13	17	20	25	32	38
Pression diff. max	. admissible (bar)		2	2	2	2	2	2	2	2	1,5	1,5	1
Servomoteur 1)	Pression de fermeture (bar)	I./II.	40	40	40	40	40	40	39,7	25,8	16,3	10	6,7
SA 07.2	Couple (Nm)		10	10	10	10	15	20	30	30	30	30	30
Embase Forme A TR 20 x 4 - LH	Temps de manoeuvre	²⁾ (s)	11	13	19	21	27	35	16	19	23	30	36
1R 20 X 4 - LH	Vitesse de sortie (min-	-1)			5	,6	'	'			16		
Servomoteur 1)	Pression de fermeture (bar)	I./II.							40	37,3	23,8	14,9	10,1
SA 07.6	Couple (Nm)								45	60	60	60	60
Embase Forme A TR 26 x 5 - LH	Temps de manoeuvre	²⁾ (s)							13	15	19	24	29
IK 20 X 5 - LFI	Vitesse de sortie (min-	·1)									16		
Servomoteur 1)	Pression de fermeture (bar)	I./II.								40	28,3	26,5	18,3
SA 10.2	Couple (Nm)									70	70	100	100
Embase Forme A TR 26 x 5 - LH	Temps de manoeuvre	²⁾ (s)							K	15	19	24	29
1K 20 X 5 - LH	Vitesse de sortie (min-	·1)									1	6	
I. Fig. 405: Garnitu	re d'étanchéité à chev	rons (en PTFE;		II. Fig.	405: PTFE-	/ Presse-éto	oupe en grap	hite pur				
Fig. 460													
DN			15	20	25	32	40	50	65	80	100	125	150
Valeur Kvs			4,2	7,4	12	19	31	47	77	120	188	288	410
Course (mm)			4	5	7	8	10	13	17	20	25	32	38
Pression diff. max	. admissible (bar)		2	2	2	2	2	2	2	2	1,5	1,5	1
Servomoteur 1)	Pression de fermeture (bar)	III.	40	40	40	40	40	40	39,5	25,6	16,1	9,9	6,6
SA 07.2	Couple (Nm)		10	10	10	10	15	20	30	30	30	30	30
Embase Forme A TR 20 x 4 - LH	Temps de manoeuvre	²⁾ (s)	11	13	19	21	27	35	16	19	23	30	36
	Vitesse de sortie (min-	·1)			5	,6					16		
Servomoteur 1)	Pression de fermeture (bar)	III.	4						40	26,7	16,9	10,4	10
AUMA SA 07.6	Couple (Nm)				1, 7				45	45	45	45	60
Embase Forme A TR 26 x 5 - LH	Temps de manoeuvre	²⁾ (s)							13	15	19	24	29
	Vitesse de sortie (min-	·1)									16		
Servomoteur 1)	Pression de fermeture	III.											18,2

III. Fig. 460: Soufflet métallique d'étanchéité
Pressions de fermeture plus élevées sur demande.

(bar)

Couple (Nm)

Temps de manoeuvre 2) (s)

Vitesse de sortie (min-1)

AUMA

SA 10.2

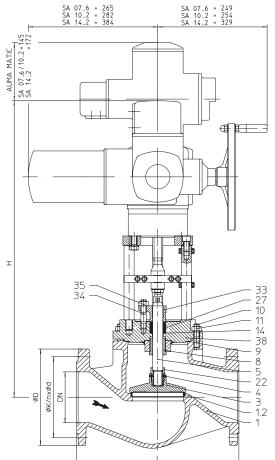
Embase Forme A

TR 26 x 5 - LH

100

29

16


Tension moteur: 400V 50Hz 3~
 (Autres tensions sur demande)
 Autres caractéristiques techniques du sen

Autres caractéristiques techniques du servomoteur: cf. tarif.

²⁾ Les temps de manoeuvre indiqués concernent la fréquence 50Hz.

Robinet à soupape d'arrêt à passage droit avec actionneur électrique AUMA SA (DN 125v-150v / DN 200-250)

F

T 00	35 34 33 27 10 11 11 14 38 9 8 5 5 22 4 3 12 1
Fig. 405	
I	20.17 20.10 20.12 20.8 20.7 20.7 20.2 20.5 20.6 20.3 20.1

Figure	Pression nominale	Matériau	Diamètre nominal
12.405 / 12.460	PN16	EN-JL1040	DN125v-150v DN200-250
22.405 / 22.460	PN16	EN-JS1049	DN125v-150v DN200-250
23.405 / 23.460	PN25	EN-JS1049	DN125v-150v
34.405 / 34.460	PN25	1.0619+N	DN125v-150v DN200-250
35.405 / 35.460	PN40	1.0619+N	DN125v-150v DN200-250

Autres matériaux et exécutions sur demande.

Etanchéité de la tige

• Presse-étoupe en PTFE -10°C à +250°C Fig. 405:

• Presse-étoupe en graphite pur -10°C à +450°C

Fig. 460: • Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C

Modèle de clapet

standard: Clapet d'arrêt

option: • Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

• métal / métal - classe de fuite 1 selon DIN 3230 T3 / B0

• métal / PTFE - classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 16.

Caractéristiques techniques de l'actionneur: consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles

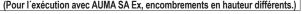
Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur

Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)


Fig. 460

ь.						
1)11	mai	1CI	ne	Δt	nn	ids

DN				125v	150v	200	250
L			(mm)	400	480	600	730
Fig. 405	Н		(mm)			844	904
	411144 04 07 0	PN16	(kg)			163	235
	AUMA SA 07.6	PN25/40	(kg)			194	271
	H (mm)		(mm)		-	856	916
	AUMA SA 10.2	PN16	(kg)			167	239
	AUWA SA 10.2	PN25/40	(kg)			198	275
F.	Н	H (mm)			877	931	991
	PN16	PN16	(kg)	110	127	197	269
	AUMA SA 14.2	PN25/40	(kg)	141	181	228	305
Fig. 460	Н		(mm)			1288	1349
_	AUMA 04 07 0	PN16	(kg)		-	167	247
	AUMA SA 07.6	PN25/40	(kg)			197	282
	Н		(mm)			1300	1361
	ALIMA CA 40.2	PN16	(kg)			171	251
	AUMA SA 10.2	PN25/40	(kg)			201	286
Dimension	s standard des brides vo	oir page 27.			(Pour l'exécution av	ec AUMA SA Ex, encombren	nents en hauteur différents.)

Longueur face à face FTF série 1 selon DIN EN 558

Pos.	Désignation	Fig. 12.405 Fig. 12.460	Fig. 22.405 / Fig. 23.405 Fig. 22.460 / Fig. 23.460	Fig. 34.405 / Fig. 35.405 Fig. 34.460 / Fig. 35.460				
1	Corps	EN-GJL-250, EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N				
1.2	Bague de siège	X20Cr13+QT, 1.4021+QT		X20Cr13+QT, 1.4021+QT >DN50: G19 9 Nb Si, 1.4551				
3	Clapet *	X20Cr13+QT, 1.4021+QT						
4	Manchon de serrage *	46S20+C, 1.0727+C						
5	Tige *	X20Cr13+QT, 1.4021+QT						
8	Douille de guidage	X20Cr13+QT, 1.4021+QT (trempé)						
9	Joint plat *	Graphite pur (avec âme en acier inoxyda	able, CrNi)					
10	Goujons filetés	25CrMo4, 1.7218	·					
11	Ecrous hexagonaux	C35E, 1.1181						
14	Rondelle *	X5CrNi18-10, 1.4301						
20.1	Entretoise de soufflet	EN-GJS-400-18U-LT, EN-JS1049		GP240GH+N, 1.0619+N				
20.2	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS1049						
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6CrNiTi18-	10, 1.4541	·				
20.5	Douille de guidage	X20Cr13+QT, 1.4021+QT (trempé)						
20.6	Joint plat *	Graphite pur (avec âme en acier inoxyda	able, CrNi)					
20.7	Goujons filetés	25CrMo4, 1.7218	,					
20.8	Ecrous hexagonaux	C35E, 1.1181						
20.9	Goupille cannelée d'ajustage	St						
20.10	Anneau de garniture *	Graphite pur						
20.12	Rondelle *	X5CrNi18-10, 1.4301						
20.17	Boulonnage *	X8CrNiS18-9, 1.4305						
22	Boulonnage *	X14CrMoS17+QT, 1.4104+QT						
25	Rallonge de tige *	X20Cr13+QT, 1.4021+QT						
26	Manchon de serrage *	X12CrNi17-7, 1.4310						
27	Anneau de garniture *	PTFE ou Graphite pur						
33	Bride de presse-étoupe	EN-GJS-400-15, EN-JS1030						
34	Goujons filetés	25CrMo4, 1.7218						
35	Ecrous hexagonaux	C35E, 1.1181						
38	Corps de presse-étoupe	EN-GJS-400-18U-LT, EN-JS1049		GP240GH+N, 1.0619+N				
41	Joint plat *	Graphite pur		· · · · · · · · · · · · · · · · · · ·				
42	Goujons filetés	25CrMo4, 1.7218						
43	Ecrous hexagonaux	C35E, 1.1181						

Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0 Respecter les limites dictées par le Tableau: pressions/températures, cf. page 27.

Fig. 405										
DN			125v	150v	200	250				
Valeur Kvs			288	410	725	1145				
Course (mm)			32	38	50	65				
Pression diff. max	. admissible (bar)		1,5	1	0,8	0,8				
Servomoteur 1) AUMA SA 07.6 Embase Forme A TR 26 x 5 - LH	Pression de fermeture (bar)	I.			5,3	3,3				
	Couple (Nm)				60	60				
	Temps de manoeuvre	²⁾ (s)			38	49				
	Vitesse de sortie (min-1)				16				
Servomoteur 1)	Pression de fermeture (bar)	I.			12,3	7,9				
SA 10.2	Couple (Nm)				120	120				
Embase Forme A	Temps de manoeuvre	²⁾ (s)			38	49				
TR 26 x 5 - LH	Vitesse de sortie (min-1)				16				
Servomoteur 1) AUMA	Pression de	I.	40	39,3	22	14,2				
SA 14.2	Couple (Nm)		200	250	250	250				
Embase Forme A	Temps de manoeuvre	²⁾ (s)	20	24	31	41				
TR 30 x 6 - LH	Vitesse de sortie (min-1		16							

Fig. 460						
DN			125v	150v	200	250
Valeur Kvs				<u></u>	725	1145
Course (mm)				-	50	65
Pression diff. max. admissible (bar)			1,5	1	0,8	0,8
Servomoteur 1)	Pression de fermeture (bar)	III.			5,3	3,3
SA 07.0	Couple (Nm)				60	60
	Temps de manoeuvre	²⁾ (s)			38	49
	Vitesse de sortie (min	-1)			1	6
Servomoteur 1)	Pression de fermeture (bar)	III.			8,8	5,6
SA 10.2	Couple (Nm)				90	90
Embase Forme A TR 26 x 5 - LH	Temps de manoeuvre	²⁾ (s)			38	49
IK 20 X 5 - LH	Vitesse de sortie (min	-1)			1	6
III. Fig. 460: Souffle	et métallique d'étanch	néité				

Pressions de fermeture plus élevées sur demande..

¹⁾ Tension moteur: 400V 50Hz 3~ (Autres tensions sur demande) Autres caractéristiques techniques du servomoteur: cf. tarif.

 $^{^{2)}\,\}mathrm{Les}$ temps de manoeuvre indiqués concernent la fréquence 50Hz.

Robinet à soupape d'arrêt à passage droit avec actionneur pneumatique DP (DN 15-150)

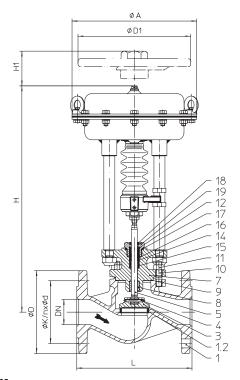


Fig. 405

Figure	Pression nominale	Matériau	Diamètre nominal
12.405 / 12.460	PN16	EN-JL1040	DN15-150
22.405 / 22.460	PN16	EN-JS1049	DN15-150
23.405 / 23.460	PN25	EN-JS1049	DN15-150
34.405 / 34.460	PN25	1.0619+N	DN15-150
35.405 / 35.460	PN40	1.0619+N	DN15-150
55.405 / 55.460	PN40	1.4408	DN15-150

Autres matériaux et exécutions sur demande

Etanchéité de la tige

Fig. 405: • Chevrons d' étanchéité en PTFE-10°C à +220°C

• Presse-étoupe en PTFE -10°C à +250°C

• Presse-étoupe en graphite pur -10°C à +450°C

Fig. 460: • Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C

Modèle de clapet

standard: • Clapet d'arrêt

option: • Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

- métal / métal classe de fuite 1 selon DIN 3230 T3 / B0
- métal / PTFE classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 20-22.

Caractéristiques techniques de l'actionneur: consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles

Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur d'eau, gaz, etc.

Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

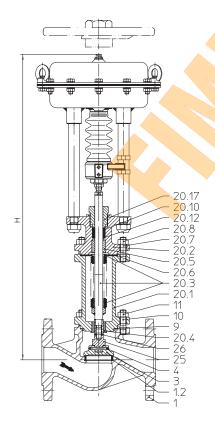
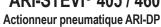



Fig. 460

Commande manuelle

Servomoteur		DP32	DP33	DP34
Ø D1	(mm)	225	300	400
H1	(mm)	270	284	442
Poids	(kg)	5	6	17
Autres caractéristique	s technique	s de l'actionneur of fich	e technique DP32-34Tr	i

DN				15	20	25	32	40	50	65	80	100	125	150
L			(mm)	130	150	160	180	200	230	290	310	350	400	480
DP32	ØA		(mm)	250										
		Н	(mm)	411	411	439	451	457	463	476	492	511		
	Fig. 405	PN16	(kg)	12,6	13,3	14,2	15,8	17,7	20,6	25,7	31,4	42		
		PN25/40	(kg)	13,4	14,2	15,5	17,3	19,8	22,5	29,7	35,9	49		
		Н	(mm)	616	616	624	635	626	628	712	724	740	-	
	Fig. 460	PN16	(kg)	17	17	18	20,5	23	25,5	28,5	39,5	55		
		PN25/40	(kg)	19	20,5	23	26	32	34,5	41,5	51,5	68		
DP33	Ø A (mm)		300	300										
		Н	(mm)	472	472	480	481	487	504	531	547	566	590	650
	Fig. 405	PN16	(kg)	18,6	19,3	20,2	21,8	23,7	26,6	31,7	37,4	48	70	91
		PN25/40	(kg)	19,4	20,2	21,5	23,3	25,8	28,5	35,7	41,9	55	82	113
		Н	(mm)	657	657	665	665	656	669	767	779	795	807	976
	Fig. 460	PN16	(kg)	23	23	24	26,5	29	31,5	34,5	45,5	61	77	108
		PN25/40	(kg)	25	26,5	29	32	38	40,5	47,5	57,5	74	89	133
DP34	ØA		(mm)					405	_					
		Н	(mm)					609	615	628	644	681	701	761
	Fig. 405	PN16	(kg)					53,7	56,6	61,7	67,4	78	100	121
		PN25/40	(kg)					55,8	58, <mark>5</mark>	65,7	71,9	85	112	143
		Н	(mm)					796	798	882	876	892	929	1087
	Fig. 460	PN16	(kg)				-	59	61,5	64,5	75,5	91	107	138
	_	PN25/40	(kg)					68	70,5	77,5	87,5	104	119	163

Longueur face à face FTF série 1 selon DIN EN 558.

Nomenclature

Pos.	Désignation	Fig. 12.405 Fig. 12.460	Fig. 22.405 / Fig. 23.405 Fig. 22.460 / Fig. 23.460	Fig. 34.405 / Fig. 35.405 Fig. 34.460 / Fig. 35.460	Fig. 55.405 Fig. 55.460					
1	Corps	EN-GJL-250, EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408					
1.2	Bague de siège	X20Cr13+QT, 1.4021+QT		X20Cr13+QT, 1.4021+QT >DN50: G19 9 Nb Si, 1.4551						
3	Clapet *	X2 <mark>0Cr13+QT, 1.4021+QT X6CrNiMoTi17-12-2, 1.4</mark>								
4	Manchon de serrage *	46S20+C, 1.0727+C								
5	Tige *	X20Cr13+QT, 1.4021+QT			X6CrNiMoTi17-12-2, 1.4571					
7	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS	\$1049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408					
8	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre			X6CrNiMoTi17-12-2, 1.4571					
9	Joint plat *	Graphite pur (avec âme en aci	ier inoxydable, CrNi)							
10	Goujons filetés	25CrMo4, 1.7218			A4 - 70					
11	Ecrous hexagonaux	C35E, 1.1181			A4					
12	Manchettes *	PTFE								
14	Rondelle *	X5CrNi18-10, 1.4301								
15	Ressort de pression *	X12CrNi17-7, 1.4310								
16	Douille *	PTFE (renforcé)								
17	Bague d'étanchéité *	Cu / Acier doux X6CrNiMoTi17-12-2, 1.4571								
18	Racleur *	PTFE (renforcé)								
19	Boulonnage *	X8CrNiS18-9, 1.4305								
20.1	Entretoise de soufflet	EN-GJS-400-18U-LT, EN-JS10	049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408					
20.2	Chapeau à traverse	EN-GJS-400-18U-LT, EN-JS10	049	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408					
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6	CrNiTi18-10, 1.4541		X6CrNiMoTi17-12-2, 1.4571					
20.4	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre			X6CrNiMoTi17-12-2, 1.4571					
20.5	Douille de guidage	X20Cr13+QT, 1.4021+QT (tre			X6CrNiMoTi17-12-2, 1.4571					
20.6	Joint plat *	Graphite pur (avec âme en ac	ier inoxydable, CrNi)							
20.7	Goujons filetés	25CrMo4, 1.7218			A4 - 70					
20.8	Ecrous hexagonaux	C35E, 1.1181			A4					
20.9	Goupille cannelée d'ajustage (DN125-150)	St								
20.10	Anneau de garniture *	Graphite pur								
20.12	Rondelle *	X5CrNi18-10, 1.4301								
20.17	Boulonnage *	X8CrNiS18-9, 1.4305								
25	Rallonge de tige *	X20Cr13+QT, 1.4021+QT			X6CrNiMoTi17-12-2, 1.4571					
26	Manchon de serrage *	X12CrNi17-7, 1.4310								
* Pièces de re	echange									

Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0

١				15	20	25	32	40	50	65	80	100	125	150
leur Kvs				4,2	7,4	12	19	31	47	77	120	188	288	410
ourse (mm)				4	5	7	8	10	13	17	20	25	32	38
ession diff.	max. a	dmissible	(bar)	2	2	2	2	2	2	2	2	1,5	1,5	1
			I.	40	40	22,4	14,3	5,4						
		1,4	II.	40	39,3	20,5	12,9	4,6						
			III.	29,9	28,1	19	11,7	3,4						
eur 2			I.			40	39,3	23,3	12,3	5	2,7			
Actionneur DP32		2,8	II.		40	40	37,9	22,5	11,7	4,6	2,4			
Act			III.	40	40	40	36,8	21,3	10,9	4,3	2,2			
			I.				40	40	21,7	8,4	4,9	2,6		
		4,0	II.				40	39,2	21,2	7,9	4,6	2,5		
			III.				40	38	20,4	7,6	4,4	2,3		
			I.	40 c)	40 c)	40 c)	33,9 c)	16,9 c)	8,5 c)	3				
		1,4	II.	40 c)	40 c)	40 c)	32,5 c)	16,1 c)	8 c)	2,5				
	_		III.	40 a)	40 a)	40 a)	31,4 a)	14,9 a)	7,2 a)	2,3 a)				
	e (bar	D 2.7	I.				40 a)	40 a)	23,2 a)	10,8	5,4	1,8		
5 ×	2,7	II.				40 a)	40 a)	22,7 a)	10,4	5,1	1,6			
		III.				40	39,8	21,9	10,1	4,9	1,5			
ctionne DP33	e né		I.							13	8	4,7		
ď	ande	3,3	II.							12,6	7,7	4,5		
	ШШ		III.							12,3	7,5	4,4		
	9 9		I.						33,5	19,4	12,2	7,4		
	on d	4,5	II.						32,9	18,9	11,9	7,2		
	essi		III.						32,1	18,6	11,7	7,1		
	ď		I.					40 f)	28,2 f)	14,8 b)	8,5 b)	4,3 b)	1,6	
		1,4	II.					40 f)	27,7 f)	14,4 b)	8,2 b)	4,1 b)	1,5	
		,	III.					40 d)	26,9 d)	14,1 d)	8 d)	4 d)	1,4 e)	
			I.						40 d)	26,8	20,9	11,6	5,7	2,9
		2,7	II.						40 d)	26,4	20,6	11,4	5,6	2,8
neul 34			III.						40 b)	26,1 b)	20,5 b)	11,3 b)	5,5 b)	2,7
Actionneur DP34			I.							39,7	25,7	16,2	9,6	5,7
Ā		3,3	II.							39,2	25,4	16,1	9,5	5,6
			III.							39 b)	25,3 a)	15,9 a)	9,5 a)	5,5
			I.							40	37,3	21,3	11,2	8
		4,5	II.							40	37	21,1	11,1	7,9
		,-	III.		_					40 a)	28,1 a)	17,8 a)	11 a)	7,8

Pression de réglage pour les actionneurs pneumatiques DP: Limitation de la pression de réglage pour l'appareil de réglage: maxi. admissible

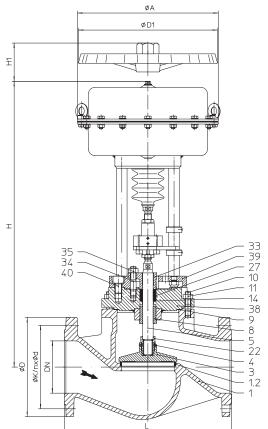
a) 5 bar

b) 4,5 bar c) 4 bar d) 3,5 bar e) 3 bar

f) 2,5 bar

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0 Respecter les limites dictées par le Tableau: pressions/températures, cf. page 27.

Ouverture par				pressions/te		, , , , , , , , , , , , , , , , , , , ,										
DN				15	20	25	32	40	50	65	80	100	125	150	1	
Valeur Kvs				4,2	7,4	12	19	31	47	77	120	188	288	410	1	
Course (mm)				4	5	7	8	10	13	17	20	25	32	38		
Pression diff.	max. a	admissible (ba	ar)	2	2	2	2	2	2	2	2	1,5	1,5	1	1	
			ĺ.	40 a)	40 a)	22,4 a)	14,3 a)	5,4 a)				,	,			
		1,4	II.	40 a)	39,3 a)	20,5 a)	12,9 a)	4,6 a)								
		,	III.	29,9	28,1	19	11,7	3,4							1	
			I.			40 a)	31,3 a)	15,5 a)	7,6 a)	2,5						
		2	II.		40 a)	40 a)	30 a)	14,7 a)	7,1 a)	2,1						
		_	III.	40	40	40	28,8	13,4	6,3	1,8						
			I.				40 a)	23,9 a)	13,1 a)	5,8	2,7					
		2,5	II.				40 a)	23 a)	12,5 a)	5,4	2,4				1	
		_,,,	III.				40	21,8	11,7	5,1	2,2					
			I.					32,3 a)	18,5 a)	9,1	4,9	2,1			1	
	<u>-</u>	3	II.					31,4 a)	17,9 a)	8,7	4,6	1,9				
	eq) e		III.					30,2	17,2	8,4	4,4	1,8			1	
	saire		I.					40 a)	23,9 a)	12,5	7,1	3,5				
	Sees	3,5	II.					39,8 a)	23,4 a)	12,0	6,8	3,3				
eur 2	le ne	0,0	III.					38,6	22,6	11,8	6,6	3,2			<u>i</u>	
Actionneur DP32	nanc		I.					30,0	29,3 a)	15,8	9,3	4,9			ché	
Ac	iomr	4	II.					40 a)	28,8 a)	15,3	9	4,8			étan	
	Pression de commande nécessaire (bar)	'	III.					40 40	28 28	15,1	8,8	4,6			Fig. 460: Soufflet métallique d'étanchéité	
	ioi		III.					70	34,7 a)	19,1	11,5	6,4			뺼	
	Less	4,5	II.						34,2 a)	18,6	11,2	6,2			néta	
	"	4,5							33,4	18,4	11	6,1			et	ğ
			III.						40 a)	22,4	13,7	7,8			튗	f) 2 5 har
		5	I.						_	22,4					Š.	4
		3	II.						39,6 a) 38,8	21,7	13,4 13,2	7,6 7,5			. 460	5
			III.						30,0						Fig	e) 3 har
			l.							25,7	15,9	9,3 9,1			≡	a
		5,5	II.						40	25,3	15,6				-	ŭ
			III.						40	25	15,4	8,9			-	d) 3.5 har
			l.							29	18,1	10,7			-	E
		6	II.							28,6	17,8	10,5			-	
			III.	40.0	40.0	40 11	044.0	47.0	0.0.1	28,3	17,6	10,4			-	ze.
			I.	40 d)	40 d)	40 d)	34,1 d)	17 d)	8,6 d)	3 d)						c) 4 har
		1,4	II.	40 d)	40 d)	40 d)	32,7 d)	16,2 d)	8 d)	2,6 d)					pur;	
			III.	40 d)	40 d)	40 d)	31,5 d)	15 d)	7,2 d)	2,3 d)					ig.	5
			I.				40 d)	33 d)	18,9 d)	9,4 d)	5 d)	2,1 d)			rap	h) 4 5 har
		2	II.				40 d)	32,2 d)	18,4 d)	8,9 d)	4,7 d)	1,9 d)			_/ g	
			III.				40 d)	31 d)	17,6 d)	8,7 d)	4,5 d)	1,8 d)			E	ŭ
			l.					40 d)	27,5 d)	14,6 d)	8,5 d)	4,4 d)	1,8 d)		en F	6 bar
		2,5	II.					40 d)	27 d)	14,2 d)	8,2 d)	4,2 d)	1,7 d)		edn	9 7
			III.					40 d)	26,2 d)	13,9 d)	8,1 d)	4,1 d)	1,6 d)		ęţo	
			I.						36,2 d)	19,9 d)	12 d)	6,7 d)	3,3 d)	1,7 d)	SSe	a) n
	bar)	3	II.						35,6 d)	19,5 d)	11,7 d)	6,5 d)	3,2 d)	1,6 d)	P	maxi. admissible
	ire (III.						34,8 d)	19,2 d)	11,6 d)	6,4 d)	3,1 d)	1,5 d)	405:	dmis
	Pression de commande nécessaire (bar)		I.						40 d)	25,2	15,5	9	4,8	2,7	II. Fig. 405: Presse-étoupe en PTFE / graphite pur;	maxi. admissible
5	néc	3,5	II.						40 d)	24,7	15,2	8,8	4,6	2,6	=	E E
Actionneur DP33	unde		III.						40 a)	24,5 a)	15,1 a)	8,7 a)	4,6 a)	2,5		
Actic DI	mma		I.							30,4	19	11,3	6,3	3,8		JP: and
	00 (4	II.							30	18,8	11,1	6,1	3,7	I. Fig. 405: Garniture d'étanchéité à chevrons en PTFE;	Pression de réglage pour les actionneurs pneumatiques DP: I imitation de la praesion de réglace pour l'annarail de réglace
	n de		III.							29,7 a)	18,6 a)	11 a)	6 a)	3,5	en P	atique is de
	3SSiC		I.							35,7	22,5	13,6	7,7	4,8	Suc	eum.
	4	4,5	II.							35,3	22,3	13,4	7,6	4,7	evr	s pne
			III.							35 a)	22,1 a)	13,3 a)	7,5 a)	4,6	àc) neur
			I.							40	26,1	15,9	9,2	5,8	ité	tionr
		5	II.							40	25,8	15,7	9,1	5,7	Į Š	s act
			III.							40 a)	25,6 a)	15,5 a)	9 a)	5,6	étai	ır le
			I.								29,6	18,1	10,7	6,9	re d	por sign
		5,5	II.								29,3	18	10,5	6,8	nitu	lage
			III.											6,7	Gar	e la
			I.			İ			İ	İ	33,1	20,4	12,2	7,9	92:	in de
		6	II.								32,8	20,2	12	7,8	ig. 4	Pression de réglage pour les actionneurs pneumatiques DP: Imitation de la pression de réglage pour l'angareil de réglage
			III.											7,7	L".	Pre
		1	1	1	L			1			1			. ,.		



Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0

N				15	20	25	32	40	50	65	80	100	125	150
aleur Kvs				4,2	7,4	12	19	31	47	77	120	188	288	410
ourse (mm)				4	5	7	8	10	13	17	20	25	32	38
ression diff.	max. a	idmissible (b	ar)	2	2	2	2	2	2	2	2	1,5	1,5	1
			l.							10,8 c)	5,4 b)	1,7 b)	1,6 a)	
		1,4	II.							10,4 c)	5,1 b)	1,5 b)	1,5 a)	
			III.								4,9 e)	1,4 e)	1,4 e)	
			l.							23,5 c)	13,9 b)	7,2 b)	5,2 a)	2,9 a
		2	II.							23,1 c)	13,6 b)	7,1 b)	5,1 a)	2,8 a
			III.								13,4 e)	6,9 e)	5 e)	2,7 a
			l.							34,2 c)	20,9 b)	11,9 b)	8,2 a)	5 a)
		2,5	II.							33,7 c)	20,6 b)	11,7 b)	8 a)	4,9 a
			III.								20,5 e)	11,6 e)	8 e)	4,8 a
			l.							40 c)	28 b)	16,5 b)	11,1 a)	7,1 a
	(bar)	II.							40 c)	27,7 b)	16,3 b)	11 a)	7 a)	
Actionneur DP34 Pression de commande nécessaire (bar)		III.								27,5 e)	16,2 e)	10,9 e)	6,9 8	
	3,5	l.								35 b)	21,1 b)	14,1 a)	9,2 8	
		II.								34,8 b)	20,9 b)	14 a)	9,1 a	
Actionneur DP34	nde		III.											9 a)
Actio	nma		l.								40 b)	25,7 b)	17,1 a)	11,3
	8	4	II.								40 b)	25,5 b)	17 a)	11,2
	ab u		III.											11,1
	SSic		l.									30,3 b)	20,1 a)	13,4
	Pa	4,5	II.									30,1 b)	19,9 a)	13,3
			III.											13,2
			l.										23 a)	15,5
		5	II.										22,9 a)	15,4
			III.							•				15,3
			l.											
		5,5	II.											
			III.											
			l.											
		6	II.											
			III.											
Fig. 405: Ga	rniture	d'étanchéit	é à chevi	rons en PTF	E; II. F	ig. 405: Pres	sse-étoupe e	n PTFE / gra	phite pur;		III. Fig.	460: Soufflet	métallique o	d'étanch

Robinet à soupape d'arrêt à passage droit avec actionneur pneumatique DP (DN 125v-150v / DN 200-250)

Fi

Ξ	
±	35 34 40 38 9 8 8 5 22 43 1.2

Figure Pression nominale Matériau Diamètre nominal DN125v-150v 12.405 / 12.460 PN16 EN-JL1040 DN200-250 DN125v-150v 22.405 / 22.460 PN16 EN-JS1049 DN200-250 23.405 / 23.460 PN25 EN-JS1049 DN125v-150v DN125v-150v 34.405 / 34.460 PN25 1.0619+N DN200-250 DN125v-150v 35.405 / 35.460 PN40 1.0619+N DN200-250

Autres matériaux et exécutions sur demande.

Etanchéité de la tige

Fig. 405: • Presse-étoupe en PTFE -10°C à +250°C

• Presse-étoupe en graphite pur -10°C à +450°C

Fig. 460: • Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C

Modèle de clapet

standard: Clapet d'arrêt

option: Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

• métal / métal - classe de fuite 1 selon DIN 3230 T3 / B0

• métal / PTFE - classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 26

Caractéristiques techniques de l'actionneur: consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles

Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur

Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

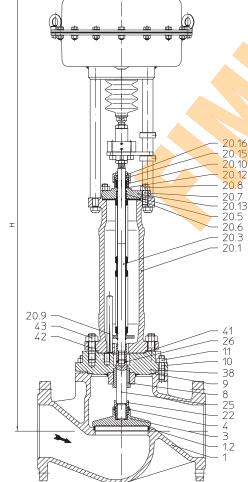
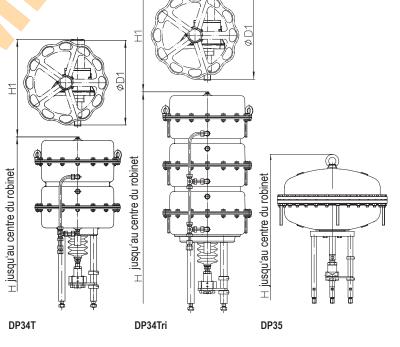



Fig. 460

Commande manuelle

Servomoteur		DP34	DP34T	DP34Tri							
Ø D1	(mm)	400	400	400							
H1	(mm)	442	635	635							
Poids	(kg)	17	41	41							
Autres caractéristiq	Autres caractéristiques techniques de l'actionneur: cf. fiche technique DP32-35.										

Dimensions et p	poids
-----------------	-------

DN				125v	150v	200	250
L			(mm)	400	480	600	730
DP34	ØA		(mm)			405	
	F1. 40F	Н	(mm)			824	904
	Fig. 405	PN16 / PN25-40	(kg)			176 / 207	248 / 284
	F1. 400	Н	(mm)			1396	1427
	Fig. 460	PN16 / PN25-40	(kg)			184 / 214	264 / 299
DP34T	ØA		(mm)	405			
	E: 40E	Н	(mm)	977	1008	1094	1154
	Fig. 405	PN16 / PN25-40	(kg)	177 / 191	204 / 231	247 / 278	319 / 355
	F1. 400	Н	(mm)	1456	1487	1541	1601
	Fig. 460	PN16 / PN25-40	(kg)	182 / 195	302 / 238	255 / 285	335 / 370
DP34Tri	ØA		(mm)	405			
	F: 40F	Н	(mm)	1199	1230	1316	1376
	Fig. 405	PN16 / PN25-40	(kg)	211 / 225	238 / 265	281 / 312	353 / 389
	F1. 400	Н	(mm)	1648	1679	1763	1823
	Fig. 460	PN16 / PN25-40	(kg)	216 / 229	247 / 272	289 / 319	369 / 404
DP35	ØA		(mm)	755			
	F': 40F	H (mm		1144	1175	1229	1289
	Fig. 405	PN16 / PN25-40	(kg)	376 / 390	403 / 430	446 / 447	518 / 554
Dimension	ns standard des	brides cf. page 27.	-				

Longueur face à face FTF série 1 selon DIN EN 558.

Nomenclature

Pos.	Désignation	Fig. 12.405 Fig. 12.460	Fig. 22.405 / Fig. 23.405 Fig. 22.460 / Fig. 23.460	Fig. 34.405 / Fig. 35.405 Fig. 34.460 / Fig. 35.460
1	Corps	EN-GJL-250 , EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N
1.2	Bague de siège	X20Cr13+QT, 1.4021+QT		X20Cr13+QT, 1.4021+QT >DN50: G19 9 Nb Si, 1.4551
3	Clapet *	X20Cr13+QT, 1.4021+QT		
4	Manchon de serrage *	46S20+C, 1.0727+C		
5	Tige *	X20Cr13+QT, 1.4021+QT		
8	Douille de guidage	X20Cr13+QT, 1.4021+QT (trempé)		
9	Joint plat *	Graphite pur (avec âme en acier inoxyda	able, CrNi)	
10	Goujons filetés	25CrMo4, 1.7218		
11	Ecrous hexagonaux	C35E, 1.1181		
14	Rondelle *	X5CrNi18-10, 1.4301		
20.1	Entretoise de soufflet	EN-GJS-400-18U-LT, EN-JS1049		GP240GH+N, 1.0619+N
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6CrNiTi18-	10, 1.4541	
20.5	Douille de guidage	X20Cr13+QT, 1.4021+QT (trempé)		
20.6	Joint plat *	Graphite pur (avec âme en acier inoxyda	able, CrNi)	
20.7	Goujons filetés	25CrMo4, 1.7218		
20.8	Ecrous hexagonaux	C35E, 1.1181		
20.9	Goupille cannelée d'ajustage	St		
20.10	Anneau de garniture *	Graphite pur		
20.12	Rondelle *	X5CrNi18-10, 1.4301		
20.13	Corps de presse-étoupe	GP240GH+N, 1.0619+N		
20.15	Bague de serrage *	X20Cr13+QT, 1.4021+QT		
20.16	Ecrou -raccord *	11SMnPb30+C, 1.0718+C		
22	Boulonnage *	X14CrMoS17+QT, 1.4104+QT		
25	Rallonge de tige *	X20Cr13+QT, 1.4021+QT		
26	Manchon de serrage *	X12CrNi17-7, 1.4310		
27	Anneau de garniture *	PTFE ou Graphite pur		
33	Bride de presse-étoupe	EN-GJS-400-15, EN-JS1030		
34	Goujons filetés	25CrMo4, 1.7218		
35	Ecrous hexagonaux	C35E, 1.1181		
38	Corps de presse-étoupe	EN-GJS-400-18U-LT, EN-JS1049		GP240GH+N, 1.0619+N
39	Raccord de bride	EN-GJS-400-18U-LT, EN-JS1049		
40	Vis à tête cylindrique	8.8 - A2B		
41	Joint plat *	Graphite pur		
42	Goujons filetés	25CrMo4, 1.7218		
43	Ecrous hexagonaux	C35E, 1.1181		
* Pièces de re	echange			

Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0

ı				125v	150v	200	250
aleur Kvs				288	410	725	1145
ourse (mm)				32	38	50	65
ression diff.	max. a	admissible (b	ar)	1,5	1	0,8	0,8
<u> </u>		3,3	II.			1,9	
Actionneur DP34		0,0	III.			1,9	
ig H		4,5	II.			3,1	1,8
		4,5	III.			3,1	1,8
		1,7	II.	5,4 b)	2,7 b)		
		1,7	III.	5,4 d)	2,7 d)		
=	Œ.	2,9	II.	13,6	7,6	2,1	
Actionneur DP34T	e (ps	2,5	III.	13,6 b)	7,6 b)	2,2 b)	
}cfi⊝ P	sair	3,5	II.	21,5	13,3	5,5	
_	éces	0,0	III.	21,5 a)	13,3 a)	5,5 a)	
	de n	4,5	II.	25,7	17,8	7,9	4,9
	man	7,0	III.	24,6 a)	16,9	7,9	4,9
	l loc	1,7	II.	9,5 d)	5,1 d)	1,2 d)	
	ge (','	III.	9,5 f)	5,1 f)	1,2 f)	
Tri Tri	Pression de commande nécessaire (bar)	2,9	II.	21,7 b)	12,5 b)	4 b)	2,4 b)
Actionneur DP34Tri	Pres	2,0	III.	21,8 d)	12,6 d)	4,1 d)	2,4 d)
P C		3,5	II.	33,6 a)	21 a)	9 a)	5,7 a)
			III.	24 c)	16,5 c)	9,1 b)	5,7 b)
		4,5	II.	40 a)	27,8 a)	12,6 a)	8 a)
Þ							
Actionneur DP35		4,3	II.		40	23,5	13,8
. Fig. 405: P	FE-/F	Presse-étoup	e en gra	phite pur			
uverture na	resso	rts					
	ressoi	rts		125v	150v	200	250
N	ressoi	rts		125v 288	150v 410	200 725	250 1145
N aleur Kvs	ressoi	rts		125v 288 32	410	725	250 1145 65
ON Valeur Kvs Course (mm)			par)	288 32	410	725 50	1145 65
Valeur Kvs Course (mm)		admissible (b	-i	288	410	725 50 0,8	1145
Valeur Kvs Course (mm)			II.	288 32	410	725 50 0,8 1,9	1145 65 0,8 1
Valeur Kvs Course (mm)		admissible (b	II.	288 32	410	725 50 0,8 1,9 1,9 a)	1145 65 0,8 1 1 a)
Valeur Kvs Course (mm)		admissible (b	II. III. II.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1	1145 65 0,8 1 1 a) 1,8
aleur Kvs ourse (mm)		admissible (b	II. III. III. III.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a)	1145 65 0,8 1 1 a) 1,8 1,8 a)
aleur Kvs Course (mm) Pression diff.		admissible (b	II. III. I	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6
aleur Kvs Course (mm) Pression diff.		admissible (b	II.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a)
on l'aleur Kvs Course (mm) Pression diff.	max. a	admissible (b	II.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4
Valeur Kvs Course (mm)	max. a	2,5 3 3,5	II. III. III. III. III. III.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a)
aleur Kvs Course (mm) Pression diff.	max. a	admissible (b	II. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1
aleur Kvs Course (mm) Pression diff.	max. a	2,5 3 3,5 4	II. III. IIII. III. IIII. IIIII. IIII. IIII. IIII. IIII. IIII. IIII. IIII. IIIII.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a)
aleur Kvs lourse (mm) ression diff.	max. a	2,5 3 3,5	II. III. I	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a)
aleur Kvs Course (mm) Pression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5	II. III. IIII. IIIIIII. IIIII. IIIIIIII	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a)
aleur Kvs lourse (mm) ression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5	II. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. IIII. III. III. III. III. III. III. III. III. IIII. III.	288 32	410	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7
aleur Kvs lourse (mm) ression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6	II. III. I	288 32 1,5	410 38 1	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a)
aleur Kvs Course (mm) Pression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5	II. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. 288 32 1,5	38 1	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7	
aleur Kvs lourse (mm) ression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6	II. III. IIII. III. IIII. IIIII. IIII. IIII. IIIIIII. IIII. IIII. IIIIIIII	288 32 1,5	3,5 b) 3,5 e)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5
N aleur Kvs ourse (mm) ression diff.		admissible (b 2,5 3 3,5 4 4,5 5 5,5 6	II. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. 288 32 1,5 1,5 6,6 c) 6,6 c) 6,6 e) 12,6 c)	3,5 b) 3,5 e) 7,7 b)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5	
N aleur Kvs ourse (mm) ression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6 1,5	II. III. IIII. III. IIII. III. IIII. IIIIIIII	288 32 1,5 1,5 6,6 c) 6,6 e) 12,6 c) 12,6 e)	3,5 b) 3,5 e) 7,7 b) 7,7 e)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5
N aleur Kvs ourse (mm) ression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6 1,5	II. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. 288 32 1,5 1,5 6,6 c) 6,6 e) 12,6 c) 12,6 e) 18,5 c)	3,5 b) 3,5 e) 7,7 b) 7,7 e) 11,9 b)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2 3,1 b) 3,1 e) 5,5 b)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5	
aleur Kvs lourse (mm) lression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6 1,5	II. III. IIII. III. IIII. IIIIIII. IIIII. IIIIIII. IIII. IIIII. IIII. IIIIIIII	288 32 1,5 1,5 6,6 c) 6,6 e) 12,6 c) 12,6 e) 18,5 c) 18,5 e)	3,5 b) 3,5 e) 7,7 b) 7,7 e) 11,9 b) 11,9 e)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2 3,1 b) 3,1 e) 5,5 b) 5,5 e)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5
N aleur Kvs ourse (mm) ression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6 1,5	II. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. 288 32 1,5 1,5 6,6 c) 6,6 e) 12,6 c) 12,6 e) 18,5 c) 18,5 e) 24,5 c)	3,5 b) 3,5 e) 7,7 b) 7,7 e) 11,9 b) 11,9 e) 16,1 b)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2 3,1 b) 3,1 e) 5,5 b) 5,5 e) 7,9 b)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5	
N aleur Kvs ourse (mm) ression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6 1,5 2 2,5	II. III. IIII. III. IIII. IIIII. IIIII. IIII. IIII. IIIIIIII	288 32 1,5 1,5 6,6 c) 6,6 e) 12,6 c) 12,6 e) 12,6 e) 18,5 c) 18,5 e) 24,5 c) 24,5 e)	3,5 b) 3,5 e) 7,7 b) 7,7 e) 11,9 b) 11,9 e) 16,1 b) 16,1 e)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2 3,1 b) 3,1 e) 5,5 b) 5,5 e) 7,9 b) 7,9 e)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5
aleur Kvs lourse (mm) lression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6 1,5 2 2,5 3 3,5	II. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. III. III. III. III. III. III. III. IIII. III. 288 32 1,5 1,5 6,6 c) 6,6 e) 12,6 c) 12,6 e) 18,5 c) 18,5 e) 24,5 c) 24,5 c) 24,5 e) 30,4 c)	3,5 b) 3,5 e) 7,7 b) 7,7 e) 11,9 b) 11,9 e) 16,1 b) 16,1 e) 20,2 b)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2 3,1 b) 3,1 e) 5,5 b) 5,5 e) 7,9 b) 7,9 e) 10,3 b)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5 1,8 b) 1,8 e) 3,4 e) 4,9 b) 4,9 e) 6,5 b)	
aleur Kvs Course (mm) Pression diff.	max. a	admissible (b 2,5 3 3,5 4 4,5 5 5,5 6 1,5 2 2,5	II. III. IIII. III. IIII. IIIII. IIIII. IIII. IIII. IIIIIIII	288 32 1,5 1,5 6,6 c) 6,6 e) 12,6 c) 12,6 e) 12,6 e) 18,5 c) 18,5 e) 24,5 c) 24,5 e)	3,5 b) 3,5 e) 7,7 b) 7,7 e) 11,9 b) 11,9 e) 16,1 b) 16,1 e)	725 50 0,8 1,9 1,9 a) 3,1 3,1 a) 4,3 4,3 a) 5,5 5,5 a) 6,7 6,7 a) 7,9 7,9 a) 9,1 10,2 3,1 b) 3,1 e) 5,5 b) 5,5 e) 7,9 b) 7,9 e)	1145 65 0,8 1 1 a) 1,8 1,8 a) 2,6 2,6 a) 3,4 3,4 a) 4,1 4,1 a) 4,9 4,9 a) 5,7 6,5

Dimensions standard des brides

Brides selon DIN EN 1092-1 / -2 (Alésages de bride/ tolérances d'épaisseur sel. DIN 2533/2544/2545)

DN			15	20	25	32	40	50	65	80	100	125	150	200	250
PN16	ØD	(mm)	95	105	115	140	150	165	185	200	220	250	285	340	405
PN16	ØK	(mm)	65	75	85	100	110	125	145	160	180	210	240	295	355
PN16	n x Ød	(mm)	4x14	4x14	4x14	4x18	4x18	4x18	4x18	8x18	8x18	8x18	8x22	12x22	12x26
PN25	ØD	(mm)	95	105	115	140	150	165	185	200	235	270	300	360	425
PN25	ØK	(mm)	65	75	85	100	110	125	145	160	190	220	250	310	370
PN25	n x Ød	(mm)	4x14	4x14	4x14	4x18	4x18	4x18	8x18	8x18	8x22	8x26	8x26	12x26	12x30
PN40	ØD	(mm)	95	105	115	140	150	165	185	200	235	270	300	375	450
PN40	ØK	(mm)	65	75	85	100	110	125	145	160	190	220	250	320	385
PN40	n x Ød	(mm)	4x14	4x14	4x14	4x18	4x18	4x18	8x18	8x18	8x22	8x26	8x26	12x30	12x33

Tableau: pressions/températures selon DIN EN 1092-2

Matériau	Natériau			-10°C jusqu'à 120°C	150°C	200°C	250°C	300°C	350°C	400°C	450°C
EN-JL1040	16	(bar)		16	14,4	12,8	11,2	9,6			
EN-JS1049	16	(bar)	sur demande	16	15,5	14,7	13,9	12,8	11,2		
EN-JS1049	25	(bar)	sur demande	25	24,3	23	21,8	20	17,5		

Tableau: pressions/températures selon norme d'usine ARI

Matériau			-60°C jusqu'à <-10°C*	-10°C jusqu'à 12	20°C	150°C	200°C	250°C	300°C	350°C	400°C	450°C
1.0619+N	25	(bar)	18,7	25		23,9	22	20	17,2	16	14,8	8,2
1.0619+N	40	(bar)	30	40		38,1	35	32	28	25,7	23,8	13,1

Tableau: pressions/températures selon DIN EN 1092-1

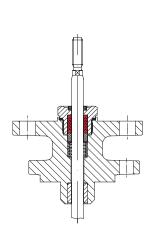
Matériau			-60°C jusqu'à <-10	0°C*	-10°	C jusqu'à 100°C	150°C	200°C	250°C	300°C	350°C	400°C	450°C
1.4408	40	(bar)	40			40	36,3	33,7	31,8	29,7	28,5	27,4	

Des valeurs intermédiaires des pressions de service maxi. admissibles ne doivent être calculées par interpolation linéaire entre la valeur de température immédiatement inférieure et supérieure.

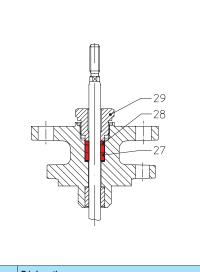
Lors de la commande, prière d'indiquer:

- Le numéro de figure
- Diamètre nominal
- Pression nominale
- Matériau du corps
- Modèle de clapet
- Etanchéité de la tige
- Type d'actionneur
- Les versions spéciales ou les accessoires éventuels

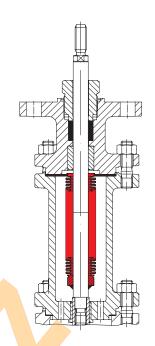
Exemple:


Figure 35.405; diamètre nominal DN 100; pression nominale PN40; matériau du corps 1.0619+N; clapet d'arrêt; étanchéité de tige: à chevron en PTFE; ARI-PREMIO 12kN

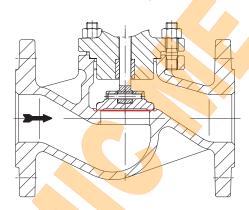
Dimensions en mm
Poids en kg
Pressions en bar(gauge)
(surpression)
1 bar ≙ 10⁵ Pa ≙ 0,1 MPa
Kvs en m³/h


^{*} Robinet à tête allongée, vis et écrous en A4-70 (pour températures en dessous de -10°C)

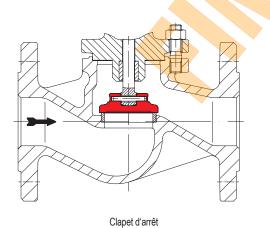
Etanchéité de la tige

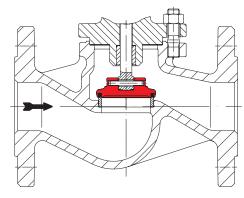


Garniture d'étanchéité à chevrons en PTFE comprimée par ressort (à DN150)


Pos.	Désignation	
27/28	Anneau de garniture *	PTFE ou Graphite pur
29	Boulonnage *	X8CrNiS18-9, 1.4305

Presse-étoupe en PTFE / graphite pur


Soufflet métallique avec presse-étoupe de sécurité


Modèles de corps

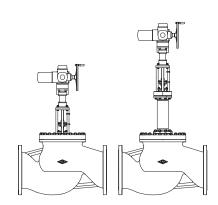
Version en acier inoxydable avec siège comprimé

Modèles des clapet

clapet d'arrêt à étanchéité souple en PTFE

Technique d'avenir. ROBINETS ALLEMANDS DE QUALITÉ

ARI-Armaturen Albert Richter GmbH & Co. KG, D-33756 Schloß Holte-Stukenbrock, Allemagne, Tél. +49 52 07 / 994-0, Fax +49 52 07 / 994-158 ou 159 Internet: http://www.ari-armaturen.com E-mail: info.vertrieb@ari-armaturen.com

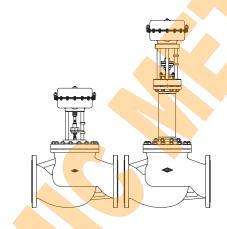


Robinet à soupape d'arrêt à passage droit DN 300 - 500

ARI-STEVI® 405 / 460

Servomoteur AUMA SA avec LE

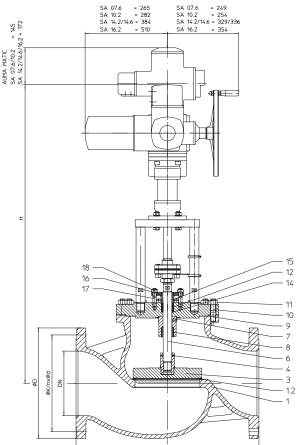
- Servomoteur à couple de manoeuvre élevé
- Indice de protection IP 67
- 2 limiteurs de couple
- 2 contacts de fin de course
- · Commande manuelle
- Protection thermique du moteur de série
- Accessoires supplémentaires livrables (par exemple: potentiomètre)
- · Version antidéflagrante possible
- · Unité linéaire blindée



ARI-STEVI® 405 / 460

Actionneur pneumatique ARI-DP

- · Actionneur réversible
- · Actionneur à membrane déroulante
- Pression de commande maximale 6 bar
- Tige protégée par soufflet
- Joint torique d'étanchéité sans entretien avec guidage flexible
- Montage d'accessoires selon DIN IEC 60534-6


Page 8

Caractéristiques:

- Sans entretien pour étanchéité en EPDM et à soufflet
- Tige poli
- · Soufflet à triple paroi
- · Indicateur mécanique de position
- · Valeurs Kvs réductibles

Robinet à soupape d'arrêt à passage droit avec actionneur électrique AUMA SA (DN300-500)

Figure	Pression nomin	ale Matériau	Diamètre nominal		
12.405	PN16	EN-JL1040	DN300		
22.405	PN16	EN-JS1049	DN300-350		
34.405	PN25	1.0619+N	DN300-500		
35.405	PN40	1.0619+N	DN300-500		
Autres matériaux et exécutions sur demande.					
Etanchéité de la tige					
E: 40E B	// DTEE	1000 \ 05000			

Fig. 405: • Presse-étoupe en PTFE -10°C à 250°C · Presse-étoupe en graphite pur -10°C à 450°C Joint d'étanchéité en EPDM 0°C à 130°C

Modèle de clapet

standard: • Clapet d'arrêt

en option:

• Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

- métal / métal classe de fuite 1 selon DIN 3230 T3 / B0
- métal / PTFE classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 6.

Caractéristiques techniques de l'actionneur: consulter la fiche technique de l'actionneur

Extrait de domaines d'utilisation possibles

Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

Fig. 405

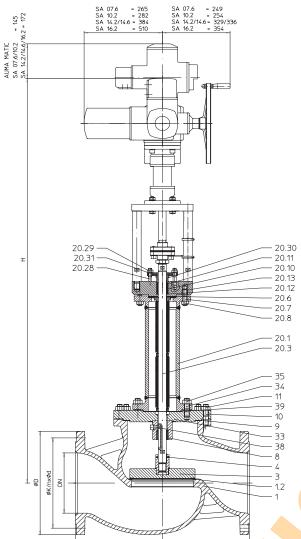
ъ.			
Dimei	nsions	et	poids

DN				300	350	400	500
L (mm)		850	980	1100	1350 (selon norme d'usine ARI)		
	Н		(mm)	1189			
	CA 07 C 1 F 05 4	PN16	(kg)	396			
	SA 07.6 avec LE 25.1	PN25-40	(kg)	444			
	Н		(mm)	1276	1333	1370	1457
	SA 10.2 avec LE 50.1	PN16	(kg)	404	487		
		PN25-40	(kg)	452	597	889	1247
	Н		(mm)	1424	1481	1518	1640
Fig. 405	SA 14.2 avec LE 70.1	PN16	(kg)	461	544		
		PN25-40	(kg)	509	654	946	1304
	Н		(mm)	1424	1481	1518	1640
	04.44.0 1.5.400.4	PN16	(kg)	463	546		
	SA 14.6 avec LE 100.1	PN25-40	(kg)	511	656	948	1306
	Н	Н		1433	1490	1662	1749
	04.40.0	PN16	(kg)	515	598		
	SA 16.2 avec LE 200.1	PN25-40	(kg)	563	708	1000	1358
Dimension	s standard des brides voir	page 11.			(Pour l'exécution avec	AUMA SA Ex, encombrem	ents en hauteur différents.)

Longueur face à face FTF série 1 selon DIN EN 558

Pos.	Désignation	Fig. 12.405	Fig. 22.405	Fig. 34.405 / Fig. 35.405				
1	Corps	EN-GJL-250 , EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N				
1.2	Siège	X20Cr13+QT, 1.4021+QT	X20Cr13+QT, 1.4021+QT G19 9 Nb Si, 1.4551					
3	Clapet *	P265GH, 1.0425 + S235JR, 1.0037 /	P265GH, 1.0425 + S235JR, 1.0037 / G19 9 Nb Si, 1.4551					
4	Manchon de serrage *	X10CrNi18-8, 1.4310						
6	Tige *	X20Cr13+QT, 1.4021+QT	X20Cr13+QT, 1.4021+QT					
7	Corps de presse-étoupe	P265GH, 1.0425 + S235JR, 1.0037	P265GH, 1.0425 + S235JR, 1.0037					
8	Douille de guidage	X20Cr13+QT, 1.4021+QT						
9	Joint plat *	Graphite pur (avec âme en acier inox	ydable, CrNi)					
10	Goujons filetés	25CrMo4, 1.7218						
11	Ecrous hexagonaux	C35E, 1.1181						
12	Anneau de garniture *	PTFE ou Graphite pur						
14	Rondelle *	X5CrNi18-10, 1.4301						
15	Bague de serrage *	X20Cr13+QT, 1.4021+QT						
16	Bride de presse-étoupe	X20Cr13+QT, 1.4021+QT						
17	Goujons filetés	25CrMo4, 1.7218						
18	Ecrous hexagonaux	C35E, 1.1181						
* Pièces o	de rechange	•						

Il faut tenir compte des indications et des restrictions de la réglementation technique!


Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Robinet à soupape d'arrêt à passage droit avec actionneur électrique AUMA SA (DN300-500)

Figure	5		Diamètre nominal	
12.460	PN16	EN-JL1040	DN300	
22.460	PN16	EN-JS1049	DN300-350	
34.460	PN25	1.0619+N	DN300-500	
35.460	PN40	1.0619+N	DN300-500	

Autres matériaux et exécutions sur demande.

Etanchéité de la tige

Fig. 460: • Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C

Modèle de clapet

standard: • Clapet d'arrêt

en option:

• Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

- métal / métal classe de fuite 1 selon DIN 3230 T3 / B0
- métal / PTFE classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 6.

Caractéristiques techniques de l'actionneur; consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles

Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

Fig. 460

D: :		
Dimensions	et.	noids

DN				300	350	400	500
L	L (mm)			850	980	1100	1350 (selon norme d'usine ARI)
	Н		(mm)	1817			
	CA 07 C 1 F 05 4	PN16	(kg)	488			
	SA 07.6 avec LE 25.1	PN25-40	(kg)	535			
	Н		(mm)	1904	1962	1981	2079
	SA 10.2 avec LE 50.1	PN16	(kg)	496	574		
		PN25-40	(kg)	543	684	950	1317
	Н		(mm)	2052	2110	2129	2262
Fig. 460	SA 14.2 avec LE 70.1	PN16	(kg)	553	631		
		PN25-40	(kg)	600	741	1007	1374
	Н		(mm)	2052	2110	2129	2262
	04.440	PN16	(kg)	555	633		
	SA 14.6 avec LE 100.1	PN25-40	(kg)	602	743	1009	1376
	Н		(mm)	2061	2119	2273	2371
		PN16	(kg)	607	685		
	SA 16.2 avec LE 200.1	PN25-40	(kg)	654	795	1061	1428
Dimension	s standard des brides voir	page 11.			(Pour l'exécution avec	AUMA SA Ex, encombrem	ents en hauteur différents.)

Longueur face à face FTF série 1 selon DIN EN 558

Nomenclature

Pos.	Désignation	Fig. 12.460	Fig. 22.460	Fig. 34.460 / Fig. 35.460		
1	Corps	EN-GJL-250 , EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N		
1.2	Siège	X20Cr13+QT, 1.4021+QT	G19 9 Nb Si, 1.4551			
3	Clapet *	P265GH, 1.0425 + S235JR, 1.0037 / 0	G19 9 Nb Si, 1.4551			
4	Manchon de serrage *	X10CrNi18-8, 1.4310				
8	Douille de guidage	X20Cr1 <mark>3+QT</mark> , 1.4021+QT				
9	Joint plat *	Graphite pur (avec âme en acier inoxy	rdable, CrNi)			
10	Goujons filetés	25CrMo4, 1.7218				
11	Ecrous hexagonaux	C35E, 1.1181				
20.1	Entretoise de soufflet	P265GH, 1.0425 / P235GH-TC1, 1.03	45			
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6CrNiTi1	X20Cr13+QT, 1.4021+QT / X6CrNiTi18-10, 1.4541			
20.6	Joint plat *	Graphite pur (avec âme en acier inoxydable, CrNi)				
20.7	Goujons filetés	25CrMo4, 1.7218				
20.8	Ecrous hexagonaux	C35E, 1.1181				
20.10	Anneau de garniture *	PTFE ou Graphite pur				
20.11	Anneau de garniture *	PTFE ou Graphite pur				
20.12	Rondelle *	X5CrNi18-10, 1.4301				
20.13	Corps de presse-étoupe	P250 GH, 1.0460				
20.28	Goujons filetés	A4-70				
20.29	Ecrous hexagonaux	A4				
20.30	Bague de serrage *	X20Cr13+QT, 1.4021+QT				
20.31	Bride de presse-étoupe	X20Cr13+QT, 1.4021+QT				
33	Bride	P265GH, 1.0425				
34	Goujons filetés	25CrMo4, 1.7218				
35	Ecrous hexagonaux	C35E, 1.1181				
38	Vis à tête cylindrique	A2-70				
39	Joint plat * Graphite pur (avec âme en acier inoxydable, CrNi)					
* Pièces de	rechange					

Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0 Respecter les limites dictées par le Tableau: pressions/températures, cf. page 11.

DN			300	350	400	500
	Siège-Ø (mm)		301	351	401	501
Valeurs Kvs standard	Valeur Kvs		1635	2220	3180	4530
	Course (mm)		75	90	100	115
Pression différentielle ma	ax. admissible (bar)		0,5	0,5	0,5	0,5
Servomoteur 1)	Pression de fermeture (bar)	1./11./111.	1,4			
AUMA	Couple (Nm)		60			
SA 07.6 avec LE 25.1	Temps de manoeuvre 2) (s)	41			
	Vitesse de sortie (min-1)		22			
Servomoteur 1)	Pression de fermeture (bar)	1./11./111.	3,3	2,3	2	1,2
AUMA	Couple (Nm)		120	120	120	120
SA 10.2 avec LE 50.1	Temps de manoeuvre 2) (s)	47	41	45	36
	Vitesse de sortie (min-1)		16	22	22	32
Servomoteur 1)	Pression de fermeture (bar)	1./11./111.	6,8	4,9	4	2,5
AUMA	Couple (Nm)		250	250	250	250
SA 14.2 avec LE 70.1	Temps de manoeuvre 2) (s)	40	48	39	45
	Vitesse de sortie (min-1)		16	16	22	22
Servomoteur 1)	Pression de fermeture (bar)	1./11./111.	15,4	11,2	8,9	5,6
AUMA	Couple (Nm)		500	500	500	500
SA 14.6 avec LE 100.1	Temps de manoeuvre 2) (s)	40	48	39	45
	Vitesse de sortie (min-1)		16	16	22	22
Servomoteur 1)	Pression de fermeture (bar)	1./11./111.	27,3	20	15,7	10
	Couple (Nm)		1000	1000	1000	1000
SA 16.2 avec LE 200.1	Temps de manoeuvre 2) (s)	51	42	47	39
	Vitesse de sortie (min-1)		11	16	16	22

II. Fig. 405: PTFE-/ Presse-étoupe en graphite pur;

III. Fig. 460: Soufflet métallique d'étanchéité

¹⁾ Tension moteur: 400V 50Hz 3~ (Autres tensions sur demande)

Autres caractéristiques techniques du servomoteur: cf. tarif.

²⁾ Les temps de manoeuvre indiqués concernent la fréquence 50Hz.

Robinet à soupape d'arrêt à passage droit avec pneumatischem Servomoteur DP (DN300)

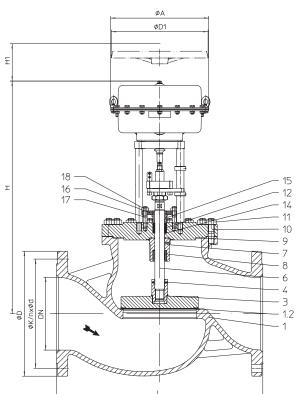


Fig. 405

Figure	Pression nominale	Matériau	Diamètre nominal
12.405 / 12.460	PN16	EN-JL1040	DN300
22.405 / 22.460	PN16	EN-JS1049	DN300
34.405 / 34.460	PN25	1.0619+N	DN300
35.405 / 35.460	PN40	1.0619+N	DN300

Autres matériaux et exécutions sur demande.

Etanchéité de la tige

Fig. 405: • Presse-étoupe en PTFE -10°C à 250°C · Presse-étoupe en graphite pur -10°C à 450°C • Joint d'étanchéité en EPDM 0°C à 130°C

• Soufflet en acier inoxydable avec presse-étoupe de sécurité -60°C à +450°C Fig. 460:

Modèle de clapet

standard: Clapet d'arrêt

en option:

• Clapet d'arrêt à étanchéité souple en PTFE (max. 200°C)

Etanchéité (classe de fuite siège / clapet)

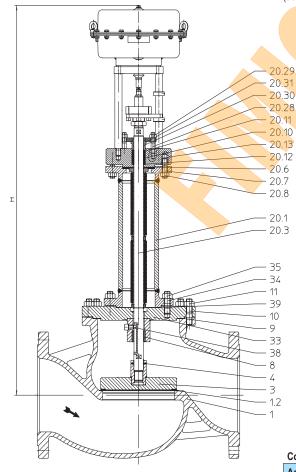
• métal / métal - classe de fuite 1 selon DIN 3230 T3 / B0

• métal / PTFE - classe de fuite 1 selon DIN 3230 T3 / B0

Pressions de fermeture cf. page 10.

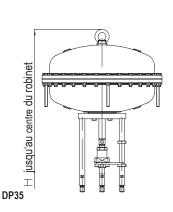
Caractéristiques techniques de l'actionneur: consulter la fiche technique de l'actionneur correspondante.

Extrait de domaines d'utilisation possibles


Industrie, technologie des procédés industriels, constr. d'installations technologiques, etc. (autres domaines d'utilisation sur demande)

Extrait de fluides de débit possibles

Fig. 405: Eau de refroidissement, saumure de refroidissement, eau chaude, eau surchauffée, vapeur d'eau, gaz, etc.


Fig. 460: Réfrigérants, eau de refroidissement, eau chaude, eau surchauffée, huile caloporteuse, vapeur d'eau, gaz, etc.

(autres fluides de débit sur demande)

Ţ	
DP34T → DP34T	
mmande n	nanuelle

Commande manuelle

Actionneur		DP34	DP34T			
Ø D1 (mm)		400				
H1	(mm)	470	635			
Poids	(kg)	17	41			
Autres caractéristiques techniques de l'actionneur: cf. fiche technique DP32-35						

ngen und Gewi	chte							
			300	350	400	500		
L (mm)			850	980	1100	1350 (selon norme d'usine ARI)		
ØA		(mm)		40	5			
	Н	(mm)	961					
Fig. 405	PN16	(kg)	405					
	PN25-40	(kg)	453					
	Н	(mm)	1589					
Fig. 460	PN16	(kg)	487					
	PN25-40	(kg)	544					
Ø A		(mm)						
	Н		1179					
Fig. 405	PN16		476					
	PN25-40	(kg)						
	Н		1807					
Fig. 460	PN16	(kg)						
	PN25-40	(kg)	615					
ØA		(mm)						
	Н	(mm)			1483	1570		
Fig. 405	PN16							
	PN25-40	(kg)	723	868	1160	1518		
	Н	(mm)	1967	2075	2094	2192		
Fig. 460	PN16		767	845				
	PN25-40	(kg)	814	955	1221	1588		
s standard des	brides voir page 11.							
	Ø A Fig. 405 Fig. 460 Ø A Fig. 460 Ø A Fig. 460 Fig. 460	Fig. 405 H	Max	Mathematical Registration Mathematical Registration	Max	Mathematical Registration Mathematical Registration		

Longueur face à face FTF série 1 selon DIN EN 558

Nomenclature

Pos.	Désignation	Fig. 12.405 Fig. 12.460	Fig. 22.405 Fig. 22.460	Fig. 34.405 / Fig. 35.405 Fig. 34.460 / Fig. 35.460					
1	Corps	EN-GJL-250 , EN-JL1040	EN-GJS-400-18U-LT, EN-JS1049	GP240GH+N, 1.0619+N					
1.2	Siège	X20Cr13+QT, 1.4021+QT		G19 9 Nb Si, 1.4551					
3	Clapet *	P265GH, 1.0425 + S235JR, 1.003	7 / G19 9 Nb Si, 1.4551						
4	Manchon de serrage *	X10CrNi18-8, 1.4310	X10CrNi18-8, 1.4310						
6	Tige *	X20Cr13+QT, 1.4021+QT	X20Cr13+QT, 1.4021+QT						
7	Corps de presse-étoupe	P265GH, 1.0425 + S235JR, 1.003	7						
8	Douille de guidage	X20Cr13+QT, 1.4021+QT							
9	Joint plat *	Graphite pur (avec âme en acier in	oxydable, CrNi)						
10	Goujons filetés	25CrMo4, 1.7218							
11	Ecrous hexagonaux	C35E, 1.1181							
12	Anneau de garniture *	PTFE ou Graphite pur							
14	Rondelle *	X5CrNi18-10, 1.4301							
15	Bague de serrage *	X20Cr13+QT, 1.4021+QT							
16	Bride de presse-étoupe	X20Cr13+QT, 1.4021+QT							
17	Goujons filetés	25CrMo4, 1.7218							
18	Ecrous hexagonaux	C35E, 1.1181							
20.1	Entretoise de soufflet	P265GH, 1.0425 / P235GH-TC1, 1	.0345						
20.3	Ensemble tige/soufflet *	X20Cr13+QT, 1.4021+QT / X6CrN	iTi18-10, 1.4541						
20.6	Joint plat *	Graphite pur (avec âme en acier in	oxydable, CrNi)						
20.7	Goujons filetés	25CrMo4, 1.7218							
20.8	Ecrous hexagonaux	C35E, 1.1181							
20.10	Anneau de garniture *	PTFE ou Graphite pur							
20.11	Anneau de garniture *	PTFE ou Graphite pur							
20.12	Rondelle *	X5CrNi18-10, 1.4301							
20.13	Corps de presse-étoupe	P250 GH, 1.0460							
20.28	Goujons filetés	A4-70							
20.29	Ecrous hexagonaux	A4							
20.30	Bague de serrage *	X20Cr13+QT, 1.4021+QT							
20.31	Bride de presse-étoupe	X20Cr13+QT, 1.4021+QT							
33	Bride	P265GH, 1.0425							
34	Goujons filetés	25CrMo4, 1.7218							
35	Ecrous hexagonaux	C35E, 1.1181							
38	Vis à tête cylindrique	A2-70							
	Joint plat *	Graphite pur (avec âme en acier inoxydable, CrNi)							

Il faut tenir compte des indications et des restrictions de la réglementation technique!

Les robinets ARI en EN-JL1040 ne sont pas agrées pour une utilisation dans les installations selon TRD 110.

Il existe une autorisation de fabrication selon TRB 801 n° 45 (EN-JL1040 n'est pas autorisé selon TRB 801 n° 45)

Le domaine d'utilisation de la robinetterie relève de la responsabilité de l'installateur ou de l'exploitant de l'installation.

Pressions de fermeture max. admissibles avec sens d'écoulement opposé au sens de fermeture du clapet et avec P2 = 0 Respecter les limites dictées par le Tableau: pressions/températures, cf. page 11. Feder schließt DN 300 350 400 500 Siège-Ø (mm) 301 351 401 501 Valeur Kvs 1635 2220 3180 4530 Course (mm) 75 90 100 115 Pression différentielle max. admissible (bar) 0,5 0,5 0,5 0,5 Pression de commande DP 35 4,3 1./11./111. 7,8 4,9 3,7 1,9 I. Fig. 405: Joint d'étanchéité en EPDM; II. Fig. 460: PTFE-/ Presse-étoupe en graphite pur; III. Fig. 460: Soufflet métallique d'étanchéité Pression de réglage pour les actionneurs pneumatiques DP: DP35: maxi. admissible 6 bar Ouverture par ressorts DN 300 350 400 500 Siège-Ø (mm) 301 351 401 501 Valeur Kvs 1635 2220 3180 4530 Course (mm) 75 90 100 115 Pression différentielle max. admissible (bar) 0,5 0,5 0,5 0,5 1,3 /_ 1./11./111. **DP 34** 5 Pression de commande 2.4 1./11./111. nécessaire (bar) 6 3,4 1./11./111. 3 2,2 --1./11./111. --DP 34 T 4 4,3 1./11./111. 5 6,4 1./11./111. --

I. Fig. 405: Joint d'étanchéité en EPDM;

II. Fig. 460: PTFE-/ Presse-étoupe en graphite pur;

8,5

III. Fig. 460: Soufflet métallique d'étanchéité

__

Pression de réglage pour les actionneurs pneumatiques DP:

 6^{1}

1./11./111.

DP34 maxi. admissible 6 bar DP34T: maxi. admissible 5 bar

¹⁾ Exécution renforcé

Dimensions standard des brides

Brides selon DIN EN 1092-1 / -2 (Alésages de bride/ tolérances d'épaisseur sel. DIN 2533/2544/2545)

DN			300	350	400	500
PN16	ØD	(mm)	460	520		
PN16	øк	(mm)	410	470		
PN16	n x Ød	(mm)	12 x 26	16 x 26		
PN25	ØD	(mm)	485	555	620	730
PN25	øк	(mm)	430	490	550	660
PN25	n x Ød	(mm)	16 x 30	16 x 33	16 x 36	20 x 36
PN40	ØD	(mm)	515	580	660	755
PN40	øк	(mm)	450	510	585	670
PN40	n x Ød	(mm)	16 x 33	16 x 36	16 x 39	20 x 42

Tableau: pressions/températures selon DIN EN 1092-2

Matériau			-60°C jusqu'à <-10°C*	-10°C jusqu'à 120°C	150°C	200°C	250°C	300°C	350°C	400°C	450°C
EN-JL1040	16	(bar)		16	14,4	12,8	11,2	9,6			
EN-JS1049	16	(bar)	sur demande	16	15,5	14,7	13,9	12,8	11,2		

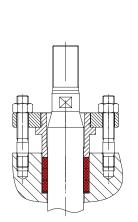
Tableau: pressions/températures selon norme d'usine ARI

Matériau			-60°C jusquʻà <-10°C*	-10°C jusqu'à 120°C	150°C	200°C	250°C	300°C	350°C	400°C	450°C
1.0619+N	25	(bar)	18,7	25	23,9	22	20	17,2	16	14,8	8,2
1.0619+N	40	(bar)	30	40	38,1	35	32	28	25,7	23,8	13,1

Des valeurs intermédiaires des pressions de service maxi. admissibles ne doivent être calculées par interpolation linéaire entre la valeur de température immédiatement inférieure et supérieure.

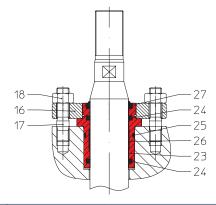
^{*} Robinet à tête allongée, vis et écrous en A4-70 (pour températures en dessous de -10°C)

Lors de la commande, prière d'indiquer:


- Le numéro de figure
- Diamètre nominal
- Pression nominale
- Matériau du corps
- Modèle de clapet
- Valeur Kvs
- Etanchéité de la tige
- Type d'actionneur
- Les versions spéciales ou les accessoires éventuels

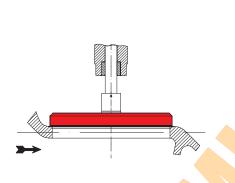
Exemple:

Figure 35.405; diamètre nominal DN300; pression nominale PN40; matériau du corps 1.0619+N; clapet d'arrêt; Kvs 301, tout ou rien, joint d'étanchéité en EPDM; AUMA SA 14.6

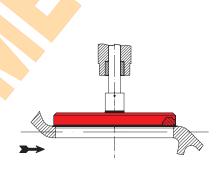

Dimensions en mm
Poids en kg
Pressions en bar(gauge)
(surpression)
1 bar ≜ 10⁵ Pa ≜ 0,1 MPa
Kvs en m³/h

Presse-étoupe en PTFE / graphite pur

Etanchéité de la tige

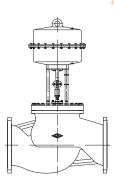

Pos.	Désignation	
16	Bride de presse-étoupe	X20Cr13+QT, 1.4021+QT
17	Goujons filetés	25CrMo4, 1.7218
18	Ecrous hexagonaux	C35E, 1.1181
23	Guidage de tige *	X20Cr13+QT, 1.4021+QT
24	Bague d'étanchéité *	EPDM 70
25	Joint	EPDM 70
26	Bande de guidage *	PTFE
27	Racleur *	NBR
* Pièc	e de rechange	

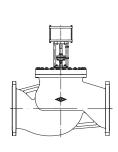
Joint d'étanchéité en EPDM



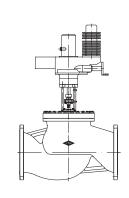
Soufflet métallique avec presse-étoupe de sécurité

Modèles des clapet





Clapet d'arrêt à étanchéité souple en PTFE



avec actionneurs pneumatique

avec actionneur hydraulique

avec actionneur électrique

FIMIC SAS

4, rue des Nonnetiers - Actipôle de Metz - Borny 57070 METZ

Tél: 03.87.76.32.32 Fax: 03.87.76.99.76

Email: fimic@fimic.com http://www.fimic.com

Technique d'avenir. ROBINETS ALLEMANDS DE QUALITÉ