

Thermostat avec capillaire

Caractéristiques

- Excellente répétabilité
- Réglage de l'écart pour la régulation
- Correction de l'écart pour le contrôle et l'alarme
- Capillaire de 1 à 20 mètres

Applications

• Équipement de sécurité de l'énergie électrique

Données techniques

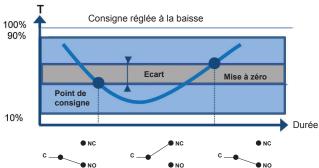
Plage de température	e -46 0 °C à 200 270 °C			
Température	Process: -46 +270 °C Ambiante: -30 + 55 °C Stokage: -40 + 55 °C			
Répétabilité	± 1% E.M. / cycle de température constante			
Conformité CE	Directive Basse Tension LVD 2006/95/CE			
Degré de protection	IP 66 (EN 60529)			
Raccord process	RTA : Alliage de cuivre RTN : Acier inox 1.4404 (316L)			
Réservoir	RTA : Alliage de cuivre RTN : Acier inox 1.4404 (316L)			
Capillaire	RTA : Alliage de cuivre RTN : Acier inox 1.4404 (316L) Pour les types de protection, voir codification à la page 5			
Echelle	Interne. Précision d'affichage ± 5% E.M.			
Couvercle	Zamak peint en bleu Vis de fixation en acier inoxydable			

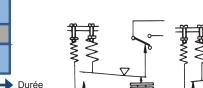
Boîtier	Zamak noir
Fixation murale	Fixation murale
Prise de terre	Interne
Raccordement électrique	Bornier avec presse-étoupe en plastique pour Ø 7 à 10,5 mm
Fonction électrique	Voir grille de codification en page 5
Réglage	2 vis externes sur le dessus du boîtier pour réglage de l'écart et des points de consigne

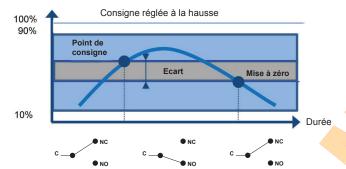
Options

Réglage des points de consigne	Code SETP
Raccord de fixation sur tube 2"	Code 0407
Etiquette de repérage en inox avec fil inox	Code 9941
Scellé avec un plomb	Code 8990
Propreté nucléaire (seulement RTN)	Code 0838
Raccordement électrique : connecteur en acier inoxydable (Souriau)	Code 2298
Fiche mobile : connecteur en acier inoxydable (Soi	uriau) Code 2249

FIMIC SAS


Email: fimic@fimic.com http://www.fimic.com




par un ressort comprimable monté en opposition.

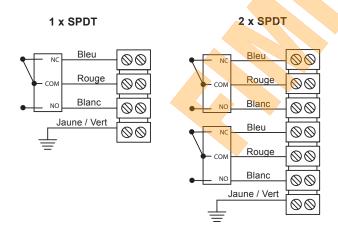
Thermostat avec capillaire

Principle

Le point de consigne et la mise à zéro doivent être compris entre 10% et 90% de l'échelle.

Un élément sensible à "tension de vapeur" actionne un microrupteur par l'intermédiaire d'un levier. Le réglage de la consigne est obtenu

Réglage standard en usine


Point de consigne à 50% de l'échelle à la baisse

Réglage en usine des points de consigne spécifique client (option SETP)

Les spécifications suivantes doivent être donnés à la commande :

- · Valeur du point de consigne
- · Réglage de la température à la baisse ou la hausse
- Valeur de l'écart (si nécessaire) lors de l'utilisation d'un microrupteur à écart réglable

Repère de câblage

Plages de réglage

130 ... 190

200 ... 270

RTNA4 - RTAA4

2

2

5 - 15

5 - 15

1

1

6

6

3

3

Thermostat avec capillaire

Code	A (B)	M (K)	C (W)	E (F)	Н	D (V)	J
Туре	Standard	Contact or	Hermétique	Grande sensibilité	Réarmement manuel	Grande sensibilité Hermétique	Réarmement manuel
6 Vcc	0,4 10 A	10 50 mA	5 mA 4 A	0,4 1 A	N/A	0,4 4 A	N/A
12 Vcc	0,4 10 A	10 50 mA	5 mA 4 A	0,4 1 A	N/A	0,4 4 A	N/A
24 Vcc	0,4 6 A	10 50 mA	5 mA 4 A	0,4 1 A	0,1 8 A	0,4 4 A	0,1 8 A
30 Vcc	0,4 6 A	10 50 mA	5 mA 3 A	0,4 1 A	0,1 8 A	0,4 2 A	0,1 8 A
48 Vcc	0,4 6 A	10 50 mA	5 mA 3 A	N/A	0,1 8 A	N/A	0,1 8 A
110 Vcc	0,1 0,5 A	10 50 mA	5 mA 1 A	N/A	N/A	N/A	N/A
220 Vcc	0,1 0,25 A	10 50 mA	5 mA 0,5 A	N/A	N/A	N/A	N/A
115 Vac	0,4 10 A	10 50 mA	50 mA 3 A	0,4 10 A	0,1 10 A	N/A	0,1 10 A
250 Vac	0,2 10 A	10 10 mA	50 mA 2,5 A	0,2 10 A	0,1 5 A	N/A	0,1 5 A
Rigidité diélectrique entre les contacts et la terre	2000 V	2000 V	1500 V	2000 V	2000 V	1000 V	2000 V

	_					Ecart du mic	rorupteur (1)			
Echelle	T _{Max}			Ecart r	églable			Eca	rt fixe	
	accidentelle	Code	A (B*)	M (K*)	C (V	V*)	Ε(F*)	H D	(V*) J
	С		10%	90%	10%	90%	10%	90%	10%	90%
						°(C			
-46 0	40	400	4 - 9	2 - 9	8 - 12	4 - 12	1,5	0,8	5	2,5
-20 20	60	401	3 - 8	1.5 - 6	6 - 10	4 - 10	1	0,5	4	2
0 45	60	402	4 - 9	2 - 9	7 - 12	4 - 12	1,5	0,7	5	2,5
40 120	145	403	5 - 16	3 - 16	10 - 20	6 - 20	2	1,2	6	4
100 160	180	414	5 - 12	3 - 12	9 - 15	5 - 15	2	1	6	3
20 80	100	415	5 - 12	3 - 12	9 - 15	5 - 15	2	1	6	3
60 250	290	406	6 - 18	4 - 18	11 - 22	7 - 22	2,5	1,2	8	4,5
70 150	175	408	5 - 16	4 - 16	10 - 20	6 - 20	2	1	6	4

5 - 12

5 - 12

3 - 12

3 - 12

210

290

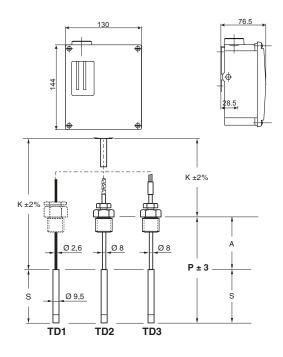
412

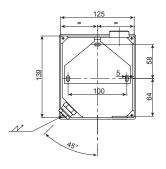
413

Ce tableau contient les valeurs d'écart pour le réglage du point de consigne à 10% et 90% de l'échelle sélectionnée. Pour l'écart réglable la valeur inférieure correspond au ressort d'écart totalement détendu et les plus élevés correspond au ressort d'écart entièrement tendu. Pour les autres points de réglage la valeur d'écart peut être calculée par interpolation linéaire entre les valeurs 10% et 90%.

9 - 15

9 - 15


 $^{(\}star)$ Pour la version avec 2 microrupteurs, les valeurs minimum de l'écart doivent être multipliées par 1,5


⁽¹⁾ La valeur de l'écart dépend de la valeur du point de consigne.

Thermostat avec capillaire

Dimensions (mm)

Longueur minimum supplémentaire (A_{min}/mm)

Connexion	TD1	TD2	TD3
Sans	0	0	0
G1/2	0	18	18
1/2 NPT	0	21	21

S = Longueur du réservoir (partie sensible à la température)

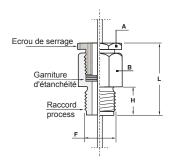
A = Longueur de l'allonge

Longueur supplémentaire minimum A_{min} dépend du type du capillaire et du raccord process (voir tableau ci-desous)

Pour la version TD1 il n'y a aucune longueur de tige supplémentaire (A = 0).

Le raccord coulissant est montée sur le capillaire.

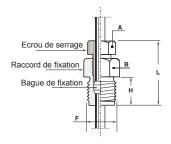
P = Immersion du plongeur (P = S + A)


 P_{min} = Longueur minimale d'immersion (P_{min} = S + A_{min})

K = Longueur du capillaire

Longueur du réservoir (S) en fonction de la longueur du capillaire (K) et la plage de température (code)

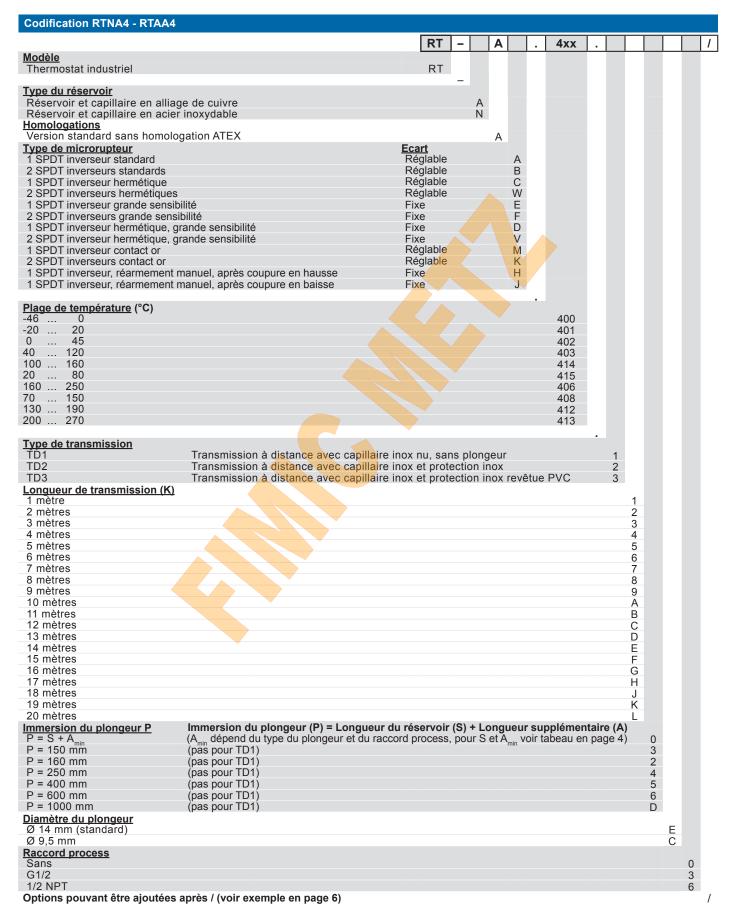
Bulbe Ø 14 mm	Code	400	401	402	403	408	412	413	414	415
K = 0 2 m	S / mm	80	80	80	80	80	80	80	80	80
K = 3 7 m	S / mm	100	100	100	100	100	100	100	100	100
K = 8 16 m	S / mm	150	150	150	150	150	150	150	150	150
K = 17 20 m	S / mm	180	180	180	180	180	180	-	180	180
Bulbe Ø 9,5 mm	Code	400	401	402	403	408	412	413	414	415
K = 0 2 m	S / mm	155	155	155	155	155	155	155	155	155
K = 3 7 m	S/mm	200	200	200	200	200	200	200	200	200
K = 8 16 m	S/mm	300	300	300	300	300	300	300	300	300
K = 17 20 m	S/mm	370	370	370	370	370	370	_	370	370


Acier inoxydable raccord coulissant mâle (TD1)

Dimensions des raccords					
F	G 1/2	1/2 NPT			
Н	18	21			
L	43	46			
Α	27/plat	27/plat			
В	27/plat	27/plat			

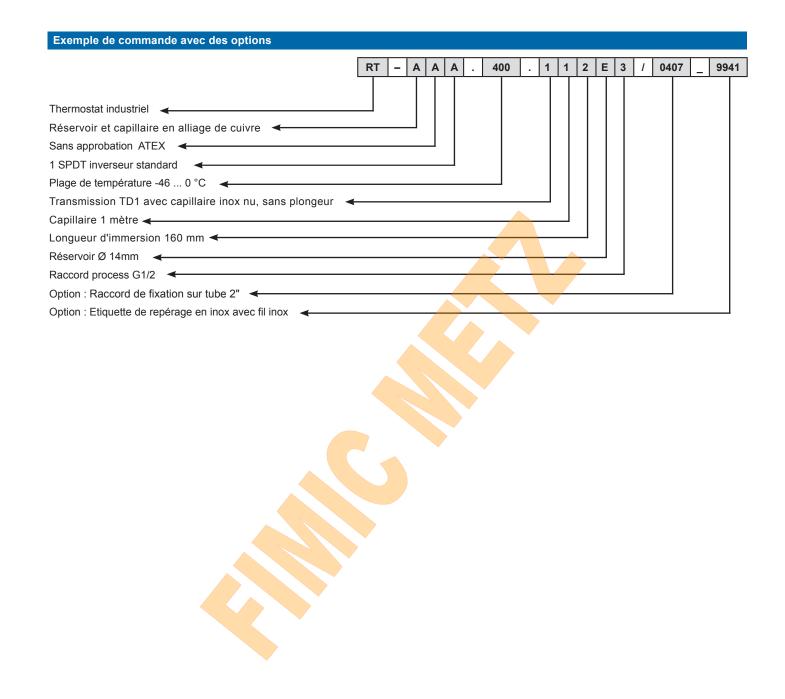
Étanchéité aux intempéries.

Acier inoxydable raccord coulissant mâle (TD2/3)



Dime	Dimensions des raccords					
F	G 1/2	1/2 NPT				
Н	18	21				
L	36	40				
Α	17/plat	17/plat				
В	23/plat	23/plat				

Devient raccord mâle positionné tournant après serrage. Étanchéité et tenue en pression maxi 40 bar.



Thermostat avec capillaire

Thermostat avec capillaire

FIMIC SAS

Tel: 03.87.76.32.32 Fax: 03.87.76.99.76

Email: fimic@fimic.com http://www.fimic.com

